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CHAPTER I

INTRODUCTION

Introduction

Composite materials have become widely used in engineering applications in

the past couple of decades. This class of materials holds many benefits when used

appropriately in engineering applications. Because of analysis uncertainties many

composite components are "over-engineered* and the design is often governed by

reiterative component testing. In these cases, the full benefit of composite materials is

not realized. This has led to the development of analysis aids for several different

structural member types.

One of the major composite structural members is the composite plate. A

plate is a load carrying member which is bounded by two parallel planes called faces.

Each face has the same characteristic length and width dimensions and are bounded

by the plate edges. The distance between these faces is the plate thickness and this

thickness is considered tc , small compared to the dimensions of the faces. The

plate faces can take on many different types of shapes (rectangular, circular, elliptical

and others). Composite plates have been used in aeronautical structures for years.

Composite plates are currently being used in land-based construction because of their

exceptional environmental properties.
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There are currently analysis programs which include composite materials. In

addition to specific composite programs, several general finite-element programs

available on large systems incorporate the analysis of composite materials. Analysis

techniques for composites have been changing rapidly. Since these larger programs

have included composites as an auxiliary component, they do not always keep up with

current research in this area. Also, the size of these programs prohiboit their use on

microcomputers. Some authors have published computer programs for specific

composite structures or limited composite material lay-ups. No author, however, has

published a computer program for the analysis of general composite plates.

Objectives

The main objective of this research is to produce a working computer program

for the analysis of general composite plates to be used on microcomputers. The

program presented in this paper is limited to the analysis of laminated composite

plates with elastic behavior and small deflections. Shear deformation is included in

the analysis because of the material behavior response specific to composites. This

program is an revision of an existing program published by J. N. Reddy [25]. Reddy's

program was developed to analyze orthotropic materials with elastic behavior and

small deflections. Although single-layered composites exhibit this behavior, most of

the composite plates used in applications have more than one layer and require a more

complex program for analysis.

To validate the computer code, results from the program are compared against

results from other analytical methods and results from other authors in the literature.

This test is used to insure that the program properly employs first-order shear
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deformation theory (FSDT) of composite plates. Additionally, the effect of shear

deformation in composite plates is observed by comparing the program results against

results from a plate theory that does not include shear deformation. Because

comprehensive instructions and documented source code are included, the program

should prove to be a valuable educational aid for teaching the application of the finite

element method to composite structures in advanced composite classes.

Overview

Chapter 11 begins with an introduction to composite materials with a

background on their mechanics. An introduction to current composite plate theories

ends the chapter. Definitions of variables and sign conventions used in the program

and the rest of the paper are presented to aid in the reader's comprehension. Chapter

M1 provides an introduction and derivation of first-order shear deformation theory of

composite plates using variational energy formulation. Chapter IV shows how this

theory is transformed into a finite element model for use in the computer program.

Numerical results from the computer program are compared against other analytical

method solutions to validate the program code in Chapter V. Finally, conclusions

derived from the results and recommendations for future work are presented in

Chapter VI.

It is assumed that the reader has a general knowledge of composite materials,

plate theory, and the finite element and variational methods. Some background is

presented in these areas to define terms and conventions used in the plate theory. For

further information in these areas, see the following references: composite materials

[1,30], plate theory [27,29,33], finite element and variational methods [8,10,21,24,25].



CHAPTER I

MECHANICS OF COMPOSITE MATERIALS AND PLATE THEORIES

Composite Materials

There are many types of composite materials used in the fabrication of

structural components. The term "composite" refers simply to a material made of

more than one distinct constituent Composites have become known as materials

which have clear boundaries between its constituents, and whose constituents have

markedly different material properties. The constituents combine to form a composite

material with material properties considerably different from any of its constituents.

Most of the modern composites contain either particulates or fibers as main

constituents. Particle-reinforced composites are formed by suspending either random

or preferred orientation particles in a surrounding material. The material properties of

these types of composites are obtained from load tests and are similar to isotropic (for

random-oriented particulates) or orthotropic (for preferred orientation particulates)

materials. Fiber-reinforced composites are made of fibers suspended in a surrounding

material. The fibers may be either continuous or discontinuous (short-fiber). Fiber-

reinforced composites may "- either single-layered (including multiple plies of the

same fiber orientation) or multi-layered. See Figure 1 for an outline of composite

classifications. The program presented in this paper, COMPLATE, is useful for

analyzing all of the above composite types. The most general case of composites are

multi-layered continuous-fiber-reinforced hybrid composites. The mechanical
4
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response of the other composite types can be modeled with simplifications to this

general case. Also, continuous-fiber-reinforced composites are the most commonly

used composites for structural components where high strength is required. For these

reasons, the mechanics of continuous-fiber-reinforced composites are defined further

and are utilized in the development of the computer program.

Composite materials
I

I I

Fiber-reinforced composites Particle-reinforced compoites
(fibrous composites) (pulte composites)I

I I

Random Preferred
orientation orientation

Sinsle.layer composites Multilayered composites

Laminates Hybrids! I

Continuous-fiber-reinforced Discontinuous-fiber-reinforced
composites CompositesI

Unidirectional Bidirectional Random Preferred
reinforcement reinforcement orientation orientation

(woven)

Figure 1: Types of Composite Materials [1].

Continuous-fiber-reinforced composites (hereafter, simply composites) differ

in many ways from isotropic materials. Composites are generally composed of two

distinct materials: reinforcements (fibers) and matrix (bonding material).

Reinforcements made of fibers form the strength of a composite because they carry a

majority of the load. Matrix is the material in between these fibers that binds the

fibers and provides for load transfer between fibers in case of fiber breakage. The
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matrix also protects the fibers from environmental degradation and damage due to

handling. The matrix material generally has strength and stiffness properties much

less than the reinforcement or fiber.

Composites often achieve strength-to-weight ratios significantly higher than

metals. Atomic theory predicts strengths much higher than those actually found in

practice for all materials. The reason for this shortfall in strength arises from inherent

defects at both the microscopic (atomic) and macroscopic (visible) levels created

during material processing. The largest allowable defect size at the macroscopic level

depends on the cross-sectional area of the material. For bulk materials, relatively

large defects can occur during material processing. For the manufacture of composite

fibers, the size of defects is reduced because the cross-sectional area of the fiber is

relatively small. If a visible defect is present in the fiber material, it breaks as it is

stretched during manufacture. The unbroken portion of fibers have defect sizes

limited to the microscopic level. By themselves, fibers are not useful for structural

applications because of their small size and strength. A large number of fibers are

bonded together by use of a matrix to form a high-strength material. There are many

methods for manufacturing composite materials. The main concern of this paper is

composite plate applications, so the following discussion refers to the structure of

composite plates. However, for more information pertaining to the manufacturing of

composites see references by Agarwal and Broutman [1], and Vinson and Sierakowski

[30].
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Lamina and Laminates

The ply is the basic building block of composite plates. A ply is the thin sheet

of unidirectional fibers bonded by matrix material developed during manufacture.

The ply is often many fiber diameters thick. A lamina or layer is formed when a

unidirectional ply or combination of unidirectional plies of the same material with the

same global fiber orientation is suspended in a matrix Although it may consist of

several plies, the important aspect of the lamina is that it is defined as a layer of

material with common directional material properties. A multi-plied lamina contains

a fiberless interface between plies which is relatively thin and is often ignored for

analysis purposes. In practice, fibers are not equally spaced, but for schematic

purposes, the lamina is often depicted having a single layer of fibers with universal

fiber spacing as in Figure 2.

The material properties of composites differ from isotropic materials in the

following way. Each lamina exhibits a generalized orthotropic behavior whose

properties are different on three mutually perpendicular planes aligned with the fiber

direction shown as 1, 2, 3 in Figure 2. Material properties are defined in the three

directions corresponding to these planes.

3

Fiur -- -2Setvwf

••-- fiber

Figure 2: Schematic view of a laIn
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These lamina are then stacked with the fibers aligned at different angles to

form what is called a laminate as shown in Figure 3. The lamina are labeled

according to their fiber angle relative to a global direction (x-axis). A code has been

developed to label laminate stacking sequences. For example, [0/45/90] is a laminate

composed of three equally thick lamina whose fibers are oriented 0°, 45°, and 90°

respectively to the principle reference direction starting with the bottom layer (as

shown in Figure 3). A subscript s, [90/45/0Js, denotes a symmetric lay-up where the

top layers are stacked in reverse order or [90/45/0/0/45/901 and a numerical subscript

denotes the number of repeated plies, [902/45,/0,J = [90/90/45/45/45/45/0/0] for

example.

As the lamina are stacked to form a laminate, effective macroscopic properties

are developed to characterize the laminate. These properties are assumed to be

homogeneous although direction dependent (anisotropic) and are a weighted average

of the properties of the composite constituents. Therefore, two laminates made of the

same fiber and matrix ,material may have very different macroscopic material

properties because of a difference in their stacking sequence.

900 z

450 y

Figure 3: Schematic of a three-layered laminate [0/45/90].
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General strengths and properties are experimentally determined for

unidirectional lamina of composite materials. These lamina strengths are

incorporated through the use of equations to predict effective macroscopic properties.

Strengths of laminate stacking sequences are determined by one of several failure

theories [1]. Test specimen are used to experimentally measure material properties

and consist of small strips of composite. These specimen are checked for apparent

flaws or defects and their edges are smoothed. The test specimen, therefore, form an

ideal base-line on the strength of the composite.

Lamina Constitutive Relations

For a given lamina, the stiffness properties are generally given with respect to

principal fiber directions. Direction-I is aligned with the longitudinal direction of the

fibers. Direction-2 is aligned with the direction transverse to the fibers in the lamina

plane. Direction-3 is normal to both the 1 and 2 directions. Figure 4 shows these

directions with respect to fiber alignment
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3

2

.denotes lamina fiber direction

Figure 4: Principal fiber directions (1,2,3).

The material properties are determined through experim"entation. Most lamina

are characterzed by the following ineenet materal properties: E1, E2, v12, O12,

G,•, G13. These properties are used to develop the stiffness matrix.

A general 6 x 6 orthotropic stiffness matr'ix relates the 6 principal normal and

shear strains to the corresponding principal stresses [1i]. For the laminate plate theory

presented in this paper, the out-of-plane normal strain,;•, is assumed to be zero. This

strain is uncoupled from the other strains and it allows the stiffness matrix to be

reucdto 5 x 5. For each lamina, the orthotropic stiffness matrix aligned with

principal fiber directions is defined by the following stress-strain relationship given in

equations 2-1 and 2-2.

' Q 1 / "Q. Q.2  0 0 0 "c.

a2z Q12  Q•, 0 0 0 £2

'zr'/= 0 0 Q33  0 0 m1 (2-1)
'z2[ 0 0 0 Q44  0 y•
,?13J 0 0 0 0 Q55 .¥3
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where the matrix terms are defined as:

Q11 El Q12 v= E2 Q22  E2

12- vv 2 1  1- v12 v21  - v12 v21

Q33 =G1 Q44 G2 Q,5= G1 3  (2-2)
v1 2 E2

and v21 = El

The stiffness matrix given above is most useful for characterizing lamina

properties. Laminates are formed by stacking layers of lamina with varying fiber

orntations, thicknesses, and materials. To accommodate the variance in fiber

orientation, the lamina stiffness matrices must be transformed to a common global

orientation. For each lamina the fiber orientation is defined by the angle, 0k, that the

fiber direction makes with the x-axis. The angle Ok is defined as positive in the

counterclockwise direction and negative in clockwise direction as shown in Figure 5.

The angle 0k can have a value between 900 and -90°.

2 Y

S...... ..

................... denotes fiber direction

Figure 5: Global fiber orientation, 0.
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The following relationships are based on a laminate of N layers. For each

lamins (k = 1,2,3,...,N), the transformed stiffness matrix, [QI, is defined by the stress-

strain relationship aligned with the global axes (x,y,z) as follows:

ay 1  Q1 Q1 Q13  0 0 E1
a, 512 '5= '1 0 0 & Y

Y = Q13 Q23 Q33  0 0 y1 , (2-3)

Z •,. 0 0 0 Q44 Q45  T.Y-

.TZ L0 0 0 545 Q55 j 1

where for each lamim, k:

,= Q,,m4 +2(Q, 2 +2Q 33)m 2n2 +Q2,n'

iL= (Q1, +Q- -4Q 33 )m 2n2 +Q 12 (m +n4)

i= Q1 1m3n- Q22Mn 3 -(Q 12 + 2Q 33 )mn(m2 - n2 )

i.., = Q,1n4 + 2(Q 2 + 2Q3 3)m 2n2 +Q.m4

'1 = Q11mn3 - Q..m3 n+(Q12 +2Q33 )Mn(m 2 - n2 ) (2-4)

i,3 =(Q1, +Q. -2Q 1 2 )m 2n2 +Q 33 (m 2 -n 2 ) 2

Q4 = Q44m 2 +Q,,n 2

Q45 = (Q55 - Q44 )mn

055= Q4n 2 +Q55m2

and m = cosOk, n = sinOk.
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Laminate Constitutive Relations

In order to develop constitutive relationships that are independent of z, it is

useful to define load and moment resultants. These resultants are the loads and

moments per unit length along the lamina x and y cross-sections and acting through

the laminate mid-plane. The orientation and positive direction are depicted in Figure

6.

A z
N x

/x Nx

yMoments defined by

N1  right-hand rule as shown

Figure 6: Orientation and positive direction of load and moment resultants.

The in-plane load resultants (N1 , N, N)ardeidasteneglsothi-

plane stresses through the thickness in the respective directions shown above in Figure

6.



14

NX = kOdz NY = fa~dz NILY=f,-jhr,dz (2-5)
2 2

The moment resultants (K , MK, MN1 ) are defined as the integrals of the

moments created about the laminate mid-plane by the in-plane stresses through the

thickness in the respective directions shown above in Figure 6.

M Lh h f2

M O =fc1zdz MY =Ja zdz M, =f.tzdz (2-6)
2 2 2

The shear load resultants (Q. and Qy) are defined as the integrals of the

transverse shear stresses through the laminate thickness.

h 
h

Q=P• ,,ndz QY A T dz (2-7)

Figure 7 shows the laminate coordinate system through the laminate thickness

with terms used in the following sets of equations.



Z - 1Z

Layer-N

rt-t

F- "T •. zk

Zk Zk
+ -------- -- - -- -- --J Laminate Midplane

hl zl

Layer-2 z

Layer- I
zo

Figure 7: Laminate coordinates and terms.

The load resultant equations 2-5 to 2-7 along with the stress-strain relations 2-

3 and 2-4 are used to develop the laminate stiffness matrices. The extensional

stiffness, coupling stiffness, and bending stiffness matrices, A,, B4, D,, respectively,

are defined by the following matrix equations:

N, All A2 A13  B,1  B12  B13  6

NY A12  A2 A3 B12  B22 B2 6;
N. = A,3  A2 A33 1,3 B2 B33 y 0-S

_~~- -B- ~ B3 y (2-8)
MX B1l B12  B13 D15 D 1, D, 3  zK
M Y B 12  B 22 B 23 D 12  D 22 D 23 iy

My. L B13  B2 B 3 D13  D2 D 33 .K j

Ql [AJA 4 5 Iy (2-9)
Q. LA45 AS,, JtXz I
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where e', c; ,y ý are the in-plane strains at the laminate mid-plane, ic, ic Y,K i are the

laminate curvatures, and y -y ? are the average transverse shear strains as defined

in the next chapter by first-order shear deformation theory.

The definitions of A, B, D plate stiffness matrix terms (i, j = 1,2,3) are given

followed by simplifications for laminated plates.

h N N

A _J- _5k'dzY XQk(zk =EO~k)tk

2 k-I k-I

kh N N

B %= = - Qýz) Z1 _ 2 )=(k)t... (2-10)
2 k-I k-

D i ' j•(k)Z2r&. k) , (Z~l 3 _z3 _ •"- --22 3 k-I k-I Q tkZk

The definitions of the terms z,Zk ,Zk.I ,tk andzk are given in Figure 7. The transverse

shear matrix terms A. (i, j = 4, 5) are given by the following equations.

h N N

A= k, PQjdz= k,.:'5:)[zk -5Zk_, ]= (2-)
2 k-l k-I

where ksc is the shear correction factor. Methods for determining the value of the

shear correction factor are presented in [5,31,33,34]

Inertial properties of the composite plate are required for dynamic analysis.

The density of each lamina is given by p(k) where k is the layer number. The following

terms represent transverse, transverse-rotation coupling, and rotational inertial

properties respectively.
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h N N
pi =J*~(k)djZ F Pk)Z - Zk...) M L tk

2 k-I k-I

p2= Jh p(k)ZdZ~ p~(k) (Z2 _ 21 p(k)tk
2 --I z - Z k_1) - kZk (2-12)

b i N N (, '

= Ji~ )2 M 2d = _JX : P(IZ 3 _-Z IJ) = J p ( k) Itk Z2+ .!Lk2 3 k-I -k-I I 1

The relationships for general orthotropic-layered laminated plates given above

can be applied to many other types of composite plates. Single-layered laminates can

be accommodated by using a single layer (N=1) in the above equations. For preferred

orientation (both fibrous and particulate) and bi-directional lamina, the orthotropic

relationships along with the preferred orientation (0) can be applied to a single layer.

For random orientation lamina (discontinuous-fiber and particulate), isotropic

relationships are obtained by using a single modulus of elasticity (EI = E2 = E) a single

shear modulus (G12 = G23 = G13 = G), and Poisson's ratio (v12 = v) in the above

relationships.

Plate Theories

Plate theories are simplifications to general three-dimensional elasticity theory

and were developed to analyze one of the basic structural member types, the plate.

Three-dimensional elasticity theory may theoretically be used to analyze any solid

object Elasticity theory is often prohibitive in practical use because of the complexity

of the solid object and the cost of applying the general theory to each analysis case.
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Because of the general shape and load conditions common to plates, certain

assumptions are made which reduce the equations of elasticity theory to several less-

complex governing equations. There are two important points to remember when

applying plate theories. First, the assumptions made in simplifying the governing

equations limit the types of cases where a particular plate theory can be effectively

applied. Second, the assumptions create an .pproximate solution for the plate

problem. Other methods including testing should be used to determine the accuracy

of the plate theory solution. Many of the plate theories were first developed for

isotropic materials and were later adapted to composite materials.

Two-dimensional plate theories are developed by assuming displacement

functions. These functions are characterized by equation 2-13. The displacement of

any point in the plate (u1 ,u2,u3) is defined by its mid-plane displacement (uv,w), a

function of the mid-plane coordinate (xy), and an assumed form of the displacement

through the plate thickness (U,V,W), dependent on the laminate mid-plane coordinate

(x,y) and distance from the mid-plane (z). These functions are also dependent on time

(t) for the case of dynamic problems. By separating the displacement functions into

these two parts, the analysis can be reduced from three dimensions (xy,z) to two

dimensions (xy).

u, (x,y,z,t) = u(x,y,t) + U(x,y,z't)
u2 (x,y,z,t) = v(x,y,t) + V(x,y,z,t) (2-13)
u3(x,y,z,t) = w(xy,t)+W(x,y,z,t)

Classical plate theory (CPT) was the first form of the plate theories and is

attributed to Kirkhhoff [20]. This theory was the first attempt to characterize thin
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isotropic plates and is limited in its scope of applications due to many assumptions.

The adaptation of this theory to laminated composite materials is generally attributed

to Yang, Norris and Stavsky with additions by Whitney and Pagano [33]. The

following assumptions provide the basis for CPT [35].

I. Plane sections of the plate cross section remain plane and normal to the
mid-surface.

2. The deflections are small compared to the plate thickness.

3. Transverse normal strain is zero and transverse shear strains are negligible.

4. Transverse normal stress is negligible.

These assumptions result in the simplified displacement fimctions given in

equation 2-14. These fimctions have three degrees of freedom (uv,w) which are

dependent on x, y, t only.

u, (x,y,z,t) = u(x,y,t)- z-(x,y,t)
ax

U (x,y,z't) = v(x yt)- z--(x,y~t) (2-14)
ay

u3(x,y,z,t) = w(x,y,t)

This theory is adequate for a large class of isotropic plates and very thin

composite plates. For thicker plates, with length and width to thickness ratios of less

than 10, CPT tends to under predict the deflections in plate. This is caused from the

transverse shear strains being larger than the assumption requires. This problem is
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also encountered in moderately thin composite plates because of the directional

material properties unique to composites.

One theory that addresses this inadequacy is the first-order shear deformation

theory (FSDT). This theory was developed by Reissner for static analysis and refined

by Mindlin for dynamic analysis of isotropic plates [18]. Yang et al. modified this

theory for composite plates with further refinements by Whitney and Pagano [33].

This theory includes transverse shear strain in the analysis and gives better results for

deflections and stresses in composite plates. Equation 2-15 shows the assumed

displacement functions for this theory. Note that this theory allows five degrees of

freedom (u,v, w,W,,y). This theory is known as first-order because the total

displacements are assumed to be linear fumctions of z through the plate thickness.

FSDT is presented in greater detail in the next chapter.

u, (x,y,z,t) = u(x,y,t) + zM, (x,y,t)
u2 (x,y,zlt) = v(x,ylt) +zvy (x-y-t) (2-15)

u3(x,y,z,t) = w(x,y,t)

FSDT does not adequately address boundary conditions on the plate faces or

predict the interlaminar shear stresses through the plate thickness. In response,

several higher-order shear deformation theories (HSDTs) have been presented based

on work by Reissner and Schmidt for isotropic plates [18]. HSDT has been extended

to laminated plates by Nelson and Lorch, Librescu, Lo et al. and Reddy [20]. These

higher-order theories retain higher-order terms of z in the displacement function (see

equation 3-1) than in CPT or FSDT. Several HSDTs have been presented by a

number of authors. A sample of these theories can be found the following references
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[3,6,12,13,14,18,19,22,26,28,35]. Equation 2-16 shows the general form of HSDTs.

The number of degrees of freedom depends on the order of the displacement functions

in terms of z and the assumptions of the particular higher-order theory.

u1 (x,y,z,t) = u(x,y,t) + zW, (x,y,t) + z2% (x,y,t) + z3*. (x,y,t)+.-.

u2 (x,y,z,t) = v(x,y,t)+zWY (x,y,t)+ z2 ,(x,y,t)+ z 3*Y(x,y,t)+... (2-16)

u3(x,y,z,t) = w(x,y,t) + zW. (x,y,t) + z24. (x,y,t)+...

HSDTs produce more accurate transverse shear stress results than the two

previous theories, however the resulting deflection and normal stresses show little

improvement over FSDT [22]. They also require large mathematical and

programming costs. Developing a program for one of these theories for a

microcomputer is prohibited by the current computing capacity of existing

microcomputers. FSDT is chosen for use in the computer program for its relatively

small computing requirements balanced with its improved analysis results.



CHAPTER 1

FIRST-ORDER SHEAR DEFORMATION
THEORY OF COMPOSITE PLATES

General theory

The first-order shear deformation theory (FSDT) presented in this chapter is

used for the revision of the computer program (COMPLATE) from the previously

written program PLATE by J. N. Reddy [25]. This theory models general laminated

composite plates and includes dynamic considerations. The main purpose of utilizing

this theory is to transform a three-dimensional elasticity problem into a two-

dimensional problem. The energy formulation is used to generate mass and stiffness

matrices for application in the finite element method presented in the next chapter.

The need for this theory arises from the invalidity of neglecting transverse

shear deformation in CPT. Transverse shear is no longer negligible in thick plates of

length to thickness ratios less than 10 for isotropic plates. Also, shear deformation is

significant in composites with length to thickness ratios much larger than 10. This is

due to the effective elastic modulus along the fiber direction (E,) being much larger

than the transverse shear moduli (G13 , G2), sometimes by the order of 25 to 40

compared to 2.6 for a representative isotropic material [22].

The assumptions listed in the next section describe the restrictions to this

model and should be considered when using this program for engineering

applications. The global axes described in the next section are shown in Figure 8 with

22
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an example rectangular plate. Note that the xy-plane corresponds to the laminate

midplane and the z-coordinate describes the distance and direction (upward or

downward) of a point with respect to this plane.

/z

b /
hh/2

x

Figure 8: Schematic of a rectangular plate.

Assumptions

The basic assumptions for this first-order shear deformation theory (FSDT) are

given as follows. The terms used in the assumptions are described on the following

pages [33].

1. The plate is constructed of an arbitrary number of orthotropic layers
(laminae) which are perfectly boned together. The directions of principle
orthotropic material symmetry, the thickness, and the material of each layer
may vary.

2. The plate is considered to be relatively thin compared to face dimensions.

3. Plate displacements (u, v, w) are small compared to the plate thickness (h).

4. In-plane strains (E., zy, yr) are small.
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5. To include in-plane force effects, non-linear terms in the equations of

motion involving products of stresses and plate slopes are retained and all
other non-linear terms are neglected.

6. Transverse shear strain (yJ, y=) are included in the analysis in case they are
not negligible.

7. The total in-plane displacements (u,, u2) are linear functions of the z-
coordinate through the plate thickness.

8. Transverse normal strain (c.) is negligible compared to other strains.

9. Each lamina behaves in an elastic manner and is governed by Hooke's law.

10. The total plate thickness is uniform throughout the plate.

11. Body forces are negligible compared to other plate forces.

12. All linear inertial terms are retained for dynamic analysis.

Variational Energy Formulation

For FSDT, a first-order (linear) displacement field in terms of z is assumed.

The general displacement of any point in the plate is described by the following first-

order displacement functions.

u, (xy, z, t) = u(x,y,t) + zw. (x,y,t)

u2 (x,y,z,t) = v(x,y,t) + zW, (x,y,t) (3-1)

U3 (X,y,Zt) = w(x,y,t)

where u, , u2 , and u3 are the displacements in the x, y, and z directions respectively, u,

v, and w are the displacements of the laminate mid-plane in the same directions, and

Wx, and Wqy are the rotations in the xz and yz planes respectively caused by plate

bending and transverse shear deformation. By adhering to the assumption of small
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displacements the strains are derived from the displacement functions in equation 3-1

as follows:

•, au +ON.,
ex =--=-- Z -ax=x+ ZK.L x +7Ic

Yay y a Y
0u 1u2 _v +z v a0,z't,

al ay-'-+-- +- + a + Z + - Y+z 1K.1  (3-2)

Y .ý2 +ýý3 = + W an
"' 'y = 8•y+

E= U u = waa'

The definitions of the mid-plane strains (c.c,y.) and the curvatures

(IC.,ICYK ) can easily be derived from the last two equalities in each equation.

Note that the transverse shear strains (y , ,y.) are constant through the plate

thickness (independent of z). Since actual transverse shear strains are not constant

through the plate thickness, the ones predicted by this theory represent average shear

strains.

This FSDT is based on a displacement derivation. For each point in the

laminate mid-plane, five degrees of freedom are defined. This allows for enough

degrees of freedom to provide adequate results for a majority of composite plate

applications. These degrees of freedom are also referred to as generalized
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displacements and consist of the following displacements and rotations: u, v, w, y.

and y.. Each generalized displacement is a function only of mid-plane position (x, y)

and time (t) for dynamic cases. These generalized displacements allow for the

reduction of three-dimensional model (x,y,z) to a two-dimensional model (xy) of the

laminate mid-plane for analysis purposes.

For the general dynamic case, the energy formulation is based on Hamilton's

Principle:

L Sdt =0 (3-3)

The Lagrangian (L) may be defined as components of energy in the following

manner.

L=U+V-T (3-4)

where U is the total strain energy, V is the potential energy due to the uniformly

distributed transverse load, and T is the total kinetic energy of the plate.

The first variation of the Lagrangian can be written as the variation of its

components:

8L= 8U+BV-BT (3-5)

In order to find the first variation of the Lagrangian, the first variation of each

of the components are derived in terms of displacements. The total strain energy of

the plate (U) is defined by the integration of the strain energy in terms of stresses and

strains of each point in the plate.
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u-- 6=fJ(o, + +Co.E +, + + (3-6)

V

Using the definitions of stress from equation 2-3 in the previous chapter, the

strain energy can be recast as:

u = •fJJ[,,16 + 02 + 2 533y•Iy+ 2 Q12E. ++2QI3c'Y17 + 2 QI2E.Fy
V (3-7)

-- +- Q 2 + 2Q45Y ,,•y.]dV+2Q23E,7 ly + Q44y 2 + Q55 s¥+., 4^ Y. d

Substituting the definitions of strain from equation 3-2, the following equation

is obtained:

u~J-W.+~ J+ ( )2 JV 2 2

+Qss2 C + 2 + 2QIs (x +-)(Y +( a ]dV (3-8)

ExQ n the equation and fato+ring terms of z (1. z, z2) yields the following:
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OU V 2 - 2OV

U = - + 2 z -"+ z 2 ' + 3
2ia (8vP 8v q'

+24~ + + OVY) '

au v av au v~a, W

+-i-+-.~ -+ -+I+QI +-

and 21may ae appie to pyield: 0-

i 2 N. O-2 2 ý-I VOV t&

a ay ax ONax ax ON ~ ay( N y

+A33(Y 0+. L +Z2B33týý-+NJy +0. LJ+D 3  + 05 J

O 8( -Y&A a ( a8y, ax ay (aua xv

ax ~ ~ a 0ý

Since uv1 2W1 3dW r nepneto , h rpeinerlmyb

intgraedwit rspet o z ad te elaios fr j, J (and D 8fomeuains21
an 211ma bapi ed~ to yield:
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+2A23-!! +B3ý('-+'' + +

+M2Dýý .{ý-.L 4Y)+A, (w + aj) +ASS+4J W +)2

The first variation of the strain energy is:

~~__8u Al A2 +A3 +8v )+BOV-+B20

DlýY(8u) + [ A, 2 +A22-+A23- I

ayaxa ax)Jay Oyaxy

+B2ý--B20Y+2 -J+8u1 )+D1 2 A 13 -+ A23,
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+D3Oa1 + B2 + B33.. O + DD 13

derived:

JJ{f, -(u) +f D _.rL+ + Jy+ JJ(8 (f,0u) + f )

&Y y a ay j a x

(3-12)

Green's Theorem is used to evaluate the last integral above:

(-- (f+u) +--- (f2 8u)JdA + J (f W.udy- f28udx) (3-13)

tax y Co ax& ]&

This leads to the following equation used to evaluate iU:

jJ(f 1. ,(8u)'+ff, (Su)JdA- -JJ()" 8 J udA+ J (f8udy-fudX) (3-14)
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8U may be divided into terms with common factors of variational

displacement, SU.. to 8U,,, and a boundary term, SU..

8= 8U8. + 8U8 + BU8 + SUBV + 8Ua, + 8U8  (3-15)

8U .- JA 1 1l-+A 12 +A 13( 2  + -+A~~i

+A 3 3  -- 12+B + B1
V+2 OX)I 2 NxDy ~axO-y

+B23+ B338 8uZj udA

8U .J8 "2 +A A23( au + 1 2 1 )+A U
= -1[A 12 -2+yA1 ý

A 1L 8x0 &228xay

+A 3 3 ( +4+B 1 2 a2W +B 1 3 
8&I+B a2WY (3-17)

+B23 1W- +2ý'I7J +B33 -+ 8
02Wcy )] 8vdA
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8Us.= A44 + •-+ A55,~ •-)(-8

-+AA+ Dx (3-18)

+A 4 5 (- + +w- 8wL dA
Op ax 8-xoy )

8 -F = BI, L +B1 2  + a"B+(2a + )+B2•2 u

a 2u a2v'• a•,_a• 2

+B33.--+.-+Dv 1 ---- +D1 i-- _ _ý+, Y2 (3-19)( Oy aX4&2 axay a-Xay a-X2

t2~ (82•<p. 82•• •--js,

BD3 y i iz G ' +e a d)J 8w, ta

and

8U B12ii -+B22-+B23i-+2-ý iV+BB 3-f[ 1AaxaY axa0y xa&Oy) &x2

+B3 2U+ 2V+D2PW - 3W + D a2 -Wy (3-20)a~o-yaX2  a~22 -

___ 
2

LW. a2W,

BY utilizing Greens Theorem and applying the laminate load resultant

relations from equations 2-8 and 2-9, the boundary condition component becomes:
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SU.= f(Nu +N1,v + Q.Sw + M.1&'s +M.,8y,)dy
Sx

(3-21)
-f (NIrsu + Nysv + Qsw + M.,8W. + M7 p,)dx

SY

For the computer program, the loading on the plate is assumed to be a uniform

pressure, thus the potential energy in the plate due to applied transverse pressure (V)

is:

V = Jq w dA (3-22)
A

and the first variation of V is

8V = ff q 8w dA (-3SVJqwA(3-23)

A

The total kinetic energy of the plate (T) is the final component of the

Lagrangian. It consists of the following integral of the energy of each point in the

plate.

T &2T=.jJJ+ (3-24)

The time derivatives of the displacements are found by taking the first time

derivative of equation 3-1 and result as follows:
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u, =au+ z ON.
at at at
au, ' z--'t' (3-25)
at at at

a.....3 aW.•_.

Substitution of these time derivatives into equation 3-24 yields:

S"2 V at aJ ]z

(3-26)

Since the time derivatives of u, v, w, WVz and 'Vy are independent of z, the

equation may be integrated with respect to z and the inertial terms from equation 2-12

(PI, p2 , and P3) may be applied:

T 2j'^P at " a" + at+ +2P32 at at at "at + at + at

(3-27)

Taking the first variation of the kinetic energy yields:

8T = + p2PI a) + P2) + PIOv+ P2'I7 8(8u) + P,8W 1 8()
(3-28)

+(P2 '+ P3 -- (8w. ) + (P 0 + p(8wv)]dA
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and using the same relation as the one derived for strain energy (equation 3-12), 8T

becomes:

8T Su+ LP -+P2 y +p, wsT-- pv+p 1 -•--w

+ (pU a2--+V n+, a: Y dA
+JP ( + P3 8W +( P2 + P(

+if u O-v +• S P OW8w

A• a• __._,t, at at (3-29)

The above variational components of virUu energy (SU, 8V, 8T) may be

combined to form the Lagrangian and collected on terms with common variational

displacement factors.

J• 8L�t+ 8Lt =0 (3-30)

where 8L = SLa, + 8L8, + Kg. + 8LBV. + KLw, + 8L. and 8L, is defined at the time

limits to and t .

Therefore,
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8L~ Al 2u +A2 2v (A1 2 2u 8a2v +A 23aV

+A33 -JJA-+A- +Al 3ý ýW- +B12~- 13

8y2 vxa & 2 w. a 82'y (2 8 2w

ýt.+,W, aU a W~t,j

B23 L-+B32 & A

rr2A 82u 82v (82u8 2 v & 2 u1

8L8, A1 -~+A 2 2 av+A 2 3 i-~+2- ai+A 13 -2L-
-JJ[

1 axa O^OY O2 &x~y) &

+A 33 a 2U+ a 2V 'B12ý W +B13 W + B22a 2W, +B2 +a~ 2! W-y-

ýW +ýLw-3 x2V a2y 8v 8y2

+B33 ( a!L +!Y L 2 Ia 2 2 -

(3-32)

+A41r + ýýL-+ 2 2W 2kq]8Wd
a~y aX aXay) J

(3-33)
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8L ~ =-JLBU+B a2 v +B1 28xu+ýy ax B + L

awl ff [Bit y &21ax 8 x 1 (&y axay2 ax2 )

(a2U a2V\ 8 2

+B 33I -- +- I+D)12ý 2W-1+D, 3--IIL+ D12 +(3M
( 0-~Y a2 ) O-Oy & 4 2Y

+Da2Ly+D. 9 +D2) a UK+ p2 -- 3-l CI

8L ~ ua 2V ) +p

a o8a 4 Oxy a2  at2  a2

(3-3 5)

The boundary term of the Lagrangian can be recast in the following general

form along the boundary.

8L3 f J(N.6u. + N.6u. + Q.w+ M.8W. + M.1 8W.i)dS (3-36)
S
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>

Figure 9: Orientation of n and s axes along the plate boundary.

In order to satisfy Hamilton's principle, one of the products of each team must

be specified along the boundary over the entire time interval. This leads to the

following conditions which must be specified on the plate boundaries. The

orientations of n and s along the boundiay are shown in Figure 9.

N.ortu, N,,oru., Q, orw, MKorW., M. orW. (3-37)

The final term of the Lagrangian variation (8L,) is defined only at the limits of

the time integral. In order for this term to satisfy Hamilton's principle, the generalized

displacements must be specified at the time interval endpoints. This condition is

satisfied in the finite element method by discretizing the time interval and treating

each time step in a semi-static sense as explained in chapter IV. The generalized

displacements are then found through a static analysis at the time limits. This term is

shown below as:
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8L a ~ av &WY -8wiL, = p•t-+p 2 IP8u+p -+p 2 at 8v + P1 at

(3-38)
+(2+3 8W I WYd

+P2 -'+ P3. ---t q' +P2 - + P3 -- /SJ dat J at at

The combination of all these variational terms yields the equation form given

in equation 3-39. The first five terms in the area integral (first line below) each

include the integral of a product of a term in parantheses and a generalized variational

displacement In order to satisfy Hamilton's principle, each of the terms in

parantheses must be equal to zero since the variational displacements are arbitrary.

This process generates five governing equations of motion. The second line in

equation 3-39 defines the boundary and initial conditions.

111jj()bu+( )8v+( )8w+( )8W.+( )8WpY]dA

+J[N.Su. +N.u. +Q.Sw+M.SW. +M.8W.]dS} +&8t 0 (-30

By applying the definition of strain in equation 3-2 and the load resultant

definitions from equations 2-8 and 2-9, the equations of motion can be displayed, in a

shorter notation, in terms of load resultants. The variational displacement before the

equations below describe the paratheses location of the corresponding equation in

equation 3-39.
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aN., + , .Y u a2UJ
8u: P•N1  8 1q 82u P2 _&

8x 8y =p' t2- + at2

8Q, + 8Q, 2w
5w: pX -- &2 q (3.40)

8.: - + M.Y a=2-+ at2W

8 M. 8MX _ 2 v 8&2P

8Wy: 0- M y + =PMY-+P at2W

These five equations are the governing equations for all plates based on small

deflection theory including shear deformation and rotary inertia. For the finite

element method presented in the next chapter, a displacement formulation is required.

The equations of motion can be cast in matrix form in terms of displacements for

easier conversion to the finite element method. This leads to an equation of the

following form:

[M]{A} + [K]{A} = {f} (341)

where:

({&} = {u.v,Wi,WpY1IT

{A} = {a,,w,, }rT (342)

{f} = {O,O,q,O,O}T
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The mass matrix terms are shown below:

M = N16 = MI3 = PI

M,4 = M I = MM 2 = P2  (3-43)

MMK = P3

All other Mb = 0

The stiffness matrix terms are written as differential operators on the vector

{A). Note that this matrix is symmetric and only the upper half terms are indicated

below.

K� 1 A,•_+( 13A A a
K12 = A 3 +(A2+ A3) + A

K13 = 0

K23 =0

K14 = B +2B 2  +B + 2B,

K15 = AB1 (B12 + 2A4 3 " + B23

K32 =A 4 •-+A 6  +

K23 = D01 -+2D 1'4+Ds4',+Ass
K45 = D 13 AL-+ (DB +D2 )'+D - ++A, (3-4)

K2, = D 33 - +2D 23 * +D2 2 , +A
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With the FSDT presented in this chapter, the ground work is set to implement

this theory into finite element code. The next chapter shows how the above matrix

equation is discretized into finite elements and applied to the computer program.



CHAPTER IV

FNImTE ELEMENT FORMULATION

This chapter descriles the finite element method (FEM) formulation used in

the computer program. Most of the FSDT development is presented in the last

chapter. The subsequent FEM formulation follows J. N. Reddy [25]. The details

shown below describe how the previous governing equations are discretized into

elements. It is assumed that the reader has some knowledge of the finite element

method including interpolation functions.

Generalized Displacements and Interpolation Functions

For the finite element model, the domain of the plate mid-plane is denoted as

R and is divided into a finite number of elements whose domains are R, (where e =

1,2,3,... number of elements). For each element domain, R,, the generalized

displacements are defined by use of an interpolation function +, (where i = 1, 2, 3, ...,

n). The interpolation function is the same for all five generalized displacements

which are described by:

U = ±u,4, v = ±vA, w= ±wA4
i-I i-I i-I (4-1)

W, = ±Wi~i 'p7 = ± Y
iWI i-I

43
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n is the number of nodes per element and the interpolation fOmction depends on the

type of element used in the analysis.

Development of Element Mass and Stiffness Matrices

The equations of motion derived for the FSDT can be applied to each element

by substituting the equations 4-1 and into equations 3-41 to 3-44. The simplified form

of the differential equation 4-2 remains the same, but the size and formulation of the

matrices and vectors changes. The mass and stiffness matrices are square symmetric

matrices of the order five times the number of nodes per element. The acceleration,

displacement and force vectors are of the same order.

[Me ](kC I + [KC ]{AC I = {FC}1 (4-2)

where the matrices and vectors are defined as:

pI[s] 0 0 P2 [S] 0 (u")}

0 p,[s] 0 0 p2[SJ (v°)

[me]= 0 0 p,[S] 0 0 {A°}= (w*} (4-3)

p2[S]T  0 0 P3[S] 0 t{w.)

0 p2 [S]T 0 0 p3[S] {',4}
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[iK"] [K12] [K "] [Ki'] [K1"]

[K21] [K2] [K2] [K2] [K2] { F}-•

[Ki4] [K4] [K 4] [Ku] [K 4] IF"4 )

[K"] [K2] [K3] [K"] [K"] (F')]

The values for the elements of the stiffness matrix are given below:

[Ki 1]- ,, [S- + A,, ([s=, ] + [s" ])+ A,3[s" ]

[K 12] A,, = s" + A,3[S-] + A[S" ] + A[Syx

[K 1] = [0][K's]=[o[K 1 ] = B,, [S-1+ B,, ([s-Y ] + [S," 1) + B33 [syy

[K"] = B,2 [S',]+B,3 [S ]+B2,,[S"]+B33 [Sy,]

[K 21] = [K 12]T = A, 2 [Sy. ]+A,,[S-]+A 24[Syy]+A 33[[Sx]

[i 2 ]=A22.[sy I]+ A2, ([s"Y ] + [s," ]) + A33, [s"
[K:]-[o]

[iK24 ] = B,•[s,•]+B, 3 [S-]+B23[Sy ]+ B33 [[SY]

[Ki']= B. S,,]+B,3([sx, ] + [Sy ])+ B3,[s]

[K"3] = [o]
[K"]=[o]

[K33]= A44[Syy] + A,, ([S-Y ] + [Sy- ]) + A,, [S- (4-5)

[Ki"] =.A 4 [SY.]+ A,,[S-0]
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[K0] =-,.[s'°]+A.,[sv]

[K" ]=[K14 ]T = B,,[Sh]+B3 ([S," ] + [S"Y])+B 33 [S"]

[K42]=[K" ]T -- ]+B,,[S"]+B.[Sy ]+B33 [Sy-

[K 43] =[K34 T =A 45 [Soy]+As3[Sft][K"]--[:] = [s]+ [°]
[K4]= D,, [S" ]+ D,([S~y ] + [SYK ]) + D.,[Syy ] + A,, [S]

[K"-] = D 12 [Sxy]+D,3[S-]+D23[Syy]+D.[Sy']+A 4 . [S]

[K"] = [K1 ]T - B•, 2[S-] + B,, [Su] + B.[S) ]+B [B4S ]

[K'2 ] = [ 1]T  +s- ] [SU

[K3 ]= [K•35]T -•[So]+A4 3[Sox ]

[K"%] = [K4"]T =D12 [S3yx]+D,,[S-I]+D.[S"]+D3 Sly]+ A 45 [S]

[K"] = S 2 ([Sl] + D[S" ]) + D,[S=] + D,[S)

The values of the [Sk"] sub-matrices are area integrals of interpolation function

values and derivatives. These sub-matrices are of order n x n, and are evaluated by

the following definitions (i,j =

s, -J -- dxdy,

R.8 8q 4T

S? j '*dxdy, 0 dx"
s•°=R. at' 0•.s -'., at = ~ (,4-6)

N = LR.8i Sjdxdy
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Note that the [Sc'11] and [Ku ] sub-matrices are not symmetric. However, since these

matrices have the properties [SC~]=[S1]T and [Ku]=[K-q]T, the total element

matrices [M' ] and [KC] are symmetric.

The sub-vectors of the force vector are of order n and are given by their

components (i = 1,2,3,...,n):

S= +i fa*1dxdy + Pi, a = 1,2,3,4,5 (4-7)

For uniform transverse pressure as used in this program, f3 = q (the transverse pressure

value), all other f, = 0, and Pi are the nodal contributions of the boundary force

conditions along the plate boundaries.

Element Types

4-Node 8-Node 9-Node

4 3 4 7 3 4 7 3

9
8 6 8 6

2 1 5 2 1 5 2

Figure 10: Element types and nodal point numbers.

The program allows the user to choose from the three element types shown in

Figure 10: four-noded linear quadrilateral, eight-noded quadratic quadrilateral, and



48

nine-noded quadratic quadrilateral elements. The four, eight, and nine-noded

elements produce element matrices of 20x20, 40x40, and 45x45, respectively.

The interpolation functions used for these elements are isoparametric and

belong to the Lagrange family. The terms of the [SNa] matrices are found using Gauss-

Legendre quadrature numerical integration. Full-integration is used for all stiffness

terms except for those terms involving traverse shear coefficients (A., A,,, A,,) in

which a reduced-integration scheme is used. The reduced-integration is performed to

prevent shear-locking effects. J. N. Reddy presents a more complete treatment If

these subjects [25].

Finite Element Procedure

For static problems, the differential equation becomes a much more simple

series of linear equations because the acceleration vector is zero. In this case, the

following equation applies:

[KO J{CI = IF'C} (4-8)

In this instance, the element matrices are assembled globally into a banded

matrix Boundary conditions are then applied to the global equation and the equation

is solved. The resulting vector gives the generalized displacement values in the

following order:

I{u'v~w, qIWJ., so"• ,{u'v'w, q.,WY -- b2,.... (4-9)
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These displacement values are used to calculate strains and stresses at the Gaussian

points of each element by applying the definitions of strain and constitutive

relationships equation 2-3 from chapter 11. The following stresses are calculated at

each lamina interface through the plate thickness at the Gaussian coordinates:

a1 My ,'7 Y ,"c1 , Tyz.

Time-Dependent Formulation

Tine-dependent problems require some extra steps in the solution because

they require the solution of a second-order differential equation. This method follows

that presented by Reddy [24,25]. The process requires transforming the equation

shown below into a series of linear equations.

[M]{A} + [K]{A} = {F} (4-10)

One way of transforming this equation into a solvable form is by using discrete

time steps in the analysis. The method used in the program is known as the Newmark

integration scheme. A time step (At) is chosen which yields a stable and accurate

solution as described later. For each time step equation 4-9 can be expressed in the

following general discretized form:

=l]A}+ {F} (4-11)

where the components are defined as:

[k] = [K] + ao[M]
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{f} F}S+ + [M](a. {,&} + a,{A} + a2 {(4) (4-12)

1 11A= a, = aoAt 2 = I- I

Thevalue for {A}..{A}..and{A.}. a •••vl~t•.
Sae the initial velocities and accelerations

supplied by the program user. Once the displacement vector at the new time step

{A)•, is found by solving equation 4-11, the new accelerations and velocities may

calculated using the following equations:

41}1 =o ({A}),+- 1}.)-a, 1 a -a 2 1AI (4-13)

{A1&.,; {A}. +[(I - Oa){A}. + a{ ,]a ]At

The a and 13 variables are parameters used in the Newmark scheme to create a

stable and accurate integration solution. There are two widely used pairs for these

parameters which guarantee stability in the analysis.

Linear acceleration method: a = 1/2, 3 = 1/6 (4-14)

Constant acceleration method: a = 1/2, 13 = 1/4

These two pairs guarantee stability in the time integration scheme, but they do

not necessarily provide accuracy. In order to obtain accurate results, the time step

must be chosen appropriately. In most cases, shorter time steps yield more accurate

approximations than longer ones. The following formula provides one way to choose

an adequate time step.
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At < IdJ 2 (4-15)

In this formula, d is the minimum distance between any two nodal points, p, is the

transverse inertial term defined in equation 2-12, and D is the lesser of the two

bending stiffness terms D,, and D22 defined in equation 2-10. Care should be given in

choosing too small a time step because of the computational cost of that choice.

With these additional steps, the procedure presented for the static case is

followed. This procedure requires solving a set of linear equations for the

displacement vector and computing then new velocity and acceleration vectors for

each time step. For this reason, the computing expense can become quite high.

Boundary Conditions

Equation 3-37 dictates the boundary condition pairs which must be specified

along the plate edges. When choosing boundary conditions for a plate problem, one

of each pair must be specified at each nodal point.

N. oru., Nmoru,, Q.orw, M.orwp., M orqp. (4-16)

The following list describes the applicable force and displacement values for

some commonly used boundary conditions.

1. Simply-Supported Edge

N.=0, N..=0, w=0, M.=0, W.=0 (4-17)

2. Hinged Edge - Free in the normal direction
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Na=0. uf=0, w=O. MM=0. Y*=0 (4-18)

3. Hinged Edge - Free in the tangential direction

u. =0, N =0, w=0, MS=0, W.=0 (4-19)

4. Clamped Edge
u1 =0, u,=0. w=0. W. =0.' Wp=0 (4-20)

5. Free Edge

N.=O, N_=O, Q.=O, M.=O, M 1 =O (4-21)

6. Line of Symmetry (for symmetrical finite element problems)

us =0, N_=0, Q2=0, Wa=0, M.=0 (4-22)

Program Information

For implementation of the displacement and force boundary conditions in

COMPLATE, the following information is necessary. By default, all generalized

displacements are assumed to be free to move and all forces are assumed to be zero.

The displacement and force vectors each have five times the number of nodes entries.

The ordering of the displacement and force vectors are shown below:

Displacement Vector-+ {{u,v,w, WI WY }--,{u~v~w, I W ,

Force Vector -+ {{N ,NY ,Q,M',M,y }m',{N.,,N7 ,Q,M. ,My1 (4-23)

To change a boundary condition from the default conditions, the user must

supply the position of the displacement or force in its respective vector and the value
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of that condition. For example, to specify a displacement of 10 in the y-direction on

node 3, the user would give 12 for its position in the vector and 10 for its value.

Summary

The basic theory behind the development of COMPLATE has been presented

in the last two chapters. This program is written in the FORTRAN-77 standard for use

on microcomputers although the code is generic and may be used on larger systems.

Appendices B and C provide more information on the program including user

information, sample program input and output data files, and documented source

code.



CHAPTER V

NUMERICAL EXAMPLES

Overview

In this chapter several numerical examples are presented to validate the

computer code. Although the computer program can analyze more complicated

composite plate shapes and laminate lay-ups, the following cases are chosen because

other solution methods are available for these types of composite plates and loadings.

Two static and one dynamic plate problems are considered. The static problems are

compared against analytical solutions using the Navier series. The dynamic problem

is compared against a solution given in the literature.

The Navier series solution method is presented in Appendix A for the two

plate problems in this chapter. The Navier series is used to find an exact solution to

both the classical plate theory (CPT) and first-order shear deformation theory (FSDT)

plate equations. The CPT solution demonstrates the importance of shear deformation

in the analysis.

The plate used in all three cases is square with sides of length, a, as shown in

figure 11. The loading condition for all three cases is a uniform transverse pressure

applied over the area of the plate surface. The laminate stacking sequence and the

boundary conditions change for the three cases in order to utilize more of the

computer code.

54
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Figure 11: Plate dimensions and loading for Cases 1, 2, and 3.

For the two static cases, Cases 1 and 2, the following material properties are

used which are representative of composite materials. These particular properties

were introduced in 1969 [15] and have been used by many other author's since.

El = 25x 106 psi E 2 = I Xl106 psi

G 12 = G13 = 0.5 x 106 psi G2 = 0.2 x 106 psi (5-1)

v12 = 0.25 k,• = Y6

Case 1: Symmetric Specially-Orthotropic Square Plate under Uniform
Transverse Pressure (Simply-Supported)

For this case, a symmetric specially-orthotropic laminate is chosen for its

laminate property features. The definition of such a laminate is one which exhibits

the following laminate properties.
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A13 = A23 = A45 = Bi = D13 = D=0 (5-2)

This type of laminate behaves like an orthotropic material for general response

purposes because the laminate stiffness matrix contains the same zero-valued terms as

an orthotropic material. All the bending-twisting coupling terms vanish. For the

calculation of interlaminar stresses, the lamina constitutive relationships are required.

Therefore, a program which is able to analyze orthotropic plates is insufficient

Because the B matrix is zero and there is no applied in-plane loading, in-plane

displacements decouple from the transverse deflection, w, and the rotations,

W. and Wy. This results in no in-plane displacements of the laminate mid-plane (u = v

=0).

For this case, the laminate stacking sequence is [0/90/0] where all three layers

have equal thicknesses, namely h/3. This type of lay-up is called a cross-ply because

the laminate is constructed of only 0 and 90 layers.

This plate is assumed to have simply-supported boundary conditions along all

the edges. This results in the following boundary conditions (ignoring in-plane

boundary conditions).

w(0,y) = w(ay) = w(x,0) = w(x,b) = 0
W. (x.,0) W. q(x, b) = W Y (0, y) =f W Y (a, y) = 0 (5-3)

M. (0,y) = M (a,y) = My (x,0) = M, (x,b) = 0

This case is used to evaluate the effectiveness of each element type compared

to the exact analytical solution so all three element types are used in the analysis.

Also the effect of shear deformation is observed by using three length to thickness

ratios (a/h = 100,10,4).
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Because of this problem's symmetry, only one quarter of the plate is needed for

the analysis. This results in the meshes shown in figure 12.

8 and 9-Noded 4-Noded

Element Meshes Element Mesh

(A.B) B,B) (A.B) B.B)r.. -----

al (i.A) (B.A a (4.A WA

a ( a

Figure 12: Geometry of FEM mesh for Cases 1 and 3.

The results of this analysis are shown in Table 1. The deflection and stresses

are non-dimensionalized by the definitions given in equation 5-4. The stresses shown

in the table are calculated at Gaussian points with coordinates defined by A and B in

equation 5-5.

wa_ a_ 0 3.hE2.0
W=W 0,2'2 h q410

-a =o CyAA__ •h)" 2 q0 a

U= A(A h). h) 2 inlayer 2 (90-) (5-4)•y~ry• , 6J qoa,

,ix = "L• B,B, h)• o--2
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T== =(B,A). h inlayer 3 (00)
q0a

=Z =,(A,B).- inlayer 2 (90°)
q0a

A = 0.55283 x a (for 2x2Q), 0.56250 x a (for 4x4L)

B = 0.94717 x a (for 2x2Q), 0.93750 x a (for 4x4L) (5-5)

The terms in the "Method" column of Table 1 refer to following T -ethods of

analysis:

COMPLATE Results:
2x2Q9- 4 element mesh using 9-noded quadratic elements.
2x2Q8- 4 element mesh using 8-noded quadratic elements.
4x4IA- 16 element mesh using 4-noded linear elements.

Other method results:
CPT- Navier series solution using classical plate theory, Appendix A.
FSDT- Navier series solution using first-order shear deformation theory, Appsndix A
HSDT- Center deflection solution by Reddy using higher-order shear deformation

theory[22].

Navier series solutions utilized 49 terms (m,n = I.. .49) - see Appendix A.

The results in Table I show that COMPLATE produces results close to those

of the Navier solution using FSDT for coarse meshes using both 8 and 9-noded

quadratic elements. The 4-noded linear element appears to be less accurate. Also

note that the non-dimensionalized deflection, w, is much higher for the cases a/h=10

and 4 than predicted by CPT.
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Table 1: Comparison of maximum deflection and stresses for Case 1 [0/90/0].

Method W cry zy ' 1  •

CPT 0.6660 0.7908 0.1935 -0.03944 0 0

2x2Q9 0.6704 0.7931 0.1949 -0.03861 -0.7036 -0.2049

2x2Q8 0.6707 0.7933 0.2015 -0.03757 -0.7118 -0.1999

a/h=-100 4x4LA 0.6660 0.7752 0.1960 -0.03631 -0.6968 -0.1967

HSDT[22] 0.6705

FSDT 0.6697 0.7905 0.1948 -0.03929 -0.7020 -0.2020

2x2Q9 1.0234 0.7577 0.3076 -0.04555 -0,6865 -0.2336

2x2Q8 1.0211 0.7575 0.3078 -0.04516 -0.6872 -0.2340

a/h=10 4x4IA 1.0276 0.7386 0.3096 -0.04332 -0.6758 -0.2247

HSDT[22] 1.0900

FSDT 1.0219 0.7556 0.3066 -0.04657 -0.6823 -0.2294

2x2Q9 2.6630 0.6419 0.6513 -0.06588 -0.6143 -0.3275

2x2Q8 2.6559 0.6419 0.6513 -0.06544 -0.6143 -0.3278

a/h=4 4x4L4 2.7025 0.6238 0.6494 -0.06300 -0.6020 -0.3198

HSDT[22] 2.9091

FSDT 2.6595 0.6408 0.6494 -0.06725 -0.6104 -0.3230
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Caw 2: Angle-Ply Square Plate under Uniform Transverse Pressure (Hinged)

For this case, an angle-ply laminate is chosen for its laminate property features.

The definition of such a laminate is one with the stacking sequence [+0/-O]J where n is

some integral multiple. This type of laminate has the following laminate property

simplifications:

A1 3 = A2 = A 45 = BI, = B1 2 = B = B33 = D1 3 = D23 = 0 (5-6)

The only bending-twisting coupling terms appear in the B matrix This case is

able to test the progran's coupling effect calculations.

For this case, the laminate stacking sequence is [45/-4512 where all four layers

have equal thicknesses, namely h/4. This plate is assumed to have hinged edges with

freedom in the tangential direction along the plate boundaries. This results in the

following boundary conditions:

w(Oy) = w(ay) = w(x,O) = w(x,a) = 0

u(0,y) = u(a,y) = v(x,0) = v(x,a) = 0

Wp(x,0) = W,(x,a) = Wy (0,y) = WY (a,y) = 0 (5-7)

My (x,0)= My(x,a) = M.(0,y) = M. (a,y) = 0

N1 (x,0)= N. (x,a) = Ny(0,y) = N, (ay) = 0

Since all three element types were evaluated in the preceding case, only the 9-

noded quadratic element is used for this case. B cause the laminate stacking

sequence is not symmetric about its mid-plane, the same plate symmetry as in case I
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does not exist for this case. Therefore a full 4x4 mesh of the entire plate is used as

shown in Figure 13.

~i±
1 .(AA)

a

Figure 13: Geometry of FEM mesh for Case 2.

The results of this analysis are shown in Table 2. The deflection and stresses

are non-dimensionalized by the definitions given in equation 5-8. The stresses shown

in the table are calculated at the Gaussian points coordinates defined by A.

W=W waa0.I~ hE...2.103

2 1 q0a'UY __Y ,A,(. h). h 2(58

2 q0a,
;Ey =y A,A,h h 2-(5S

Xo 2,
• 2 2) qoa

7 r , = ' , ( A , A , --h ) ' --
S 2) qoa,
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,~h-= =' "t AA)•---
q0a

A= 0.55283 x a (5-9)

4x4Q9 refers to results from COMPLATE. The other methods are defined in

the same way as in case 1. In addition to tabular results, the stresses are plotted

through the thickness to show a representation of interlaminar stresses in Figures 14 to

16.

The results in Table 2 show that the computer program provides adequate

accuracy compared to the Navier solution of FSDT. Also note that the non-

dimensionalized deflection, w, is much higher for the cases a/h=10 and 4 than

predicted by OPT.
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Table 2: Comparison of maximum deflection and stresses for Case 2 [±4512.

Method w . UY 'iIY. f7

CPT 0.4408 0.2040 0.2040 -0.1774 0 0

a/h-100 4x4Q9 0.4439 0.2041 0.2041 -0.1776 -0.01783 -0.01783

FSDT 0.4433 0.2039 0.2039 -0.1773 -0.01789 -0.01789

Auhf170 4x4Q9 0.6925 0.2011 0.2011 -0.1751 -0.01773 -0.01773

FSDT 0.6917 0.2007 0.2007 -0.1746 -0.01788 -0.01788

a/hf4 4x4Q9 2.0186 0.1986 0.1986 -0.1731 -0.01763 -0.01763

FSDT 2.0164 0.1977 0.1977 -0.1722 -0.01784 -0.01784

0.25 ----------------------------------- 9-----

z'h 0------------------------------

-0.25 3

-0.5 ..... ,
-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

U.

Figure 14: Normal stress, U, through the plate thickness

near the plate center for Case 2 [±45]2.
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0.5.

0.25 -- - - - -- -- -

-- - - -- - - - -- - - -- - - -0 --

-(.25 --- - - - - - -

-0.5
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Figure 15: In-plane shear strss, i,, through the plate thickness

near the plate center for Case 2 [±4512.

-0.25 --- -- --- -- -- --- -- --- -- --

.0.25 .- . .* I- 4 . . -'

-0.005 -0.0025 0 0.0025 0.005

Figure 16: Transverse shear stress, i., through the plate thickness
near the plate center for Case 2 [±4512.-
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Case 3: Orthotropic Square Plate under Suddenly Applied Uniform Transverse
Pressure (Simply-Supported)

In order to validate the dynamic analysis routines, a simple orthotropic

laminate is chosen for this case. Results presented by Reddy [23] are used in

comparison The material properties and time parameters used in this analysis are

also taken from [23]. The following material properties are used

El = 52.5x10 /CM2  E2 = 2. lxlyo/ 2

G12= G13 = G2= 1.05x106 NI/2

1= 0.25 
p = .10-6Nsecy m(5-1

and the time parameters for the Newmark scheme (constant-average acceleration) are:

At= 5 Itsec, a= 0.5, 0=0.25 (5-11)

Since only one layer exists, the stacking sequence is [0]. The plate edges are

simply-supported and a uniform pressure is suddenly applied at the initial time step

which remains steady throughout the analysis. The boundary conditions are the same

as in Case 1. Symmetry is again utilized and the mesh is the same as the one used

with the 2x2Q9 elements in Case 1. Since a direct comparison is made with the
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literature, the results are not non-dimensionalized. The plate is square with the

following geometric parameters:

a=25 cm, h=5cm (5-12)

Table 3 shows the results of the center deflection and the stress at the Gaussian

point nearest to the plate center (AA) over time compared to the results presented by

Reddy. Since Reddy used a similar procedure, the results coincide exactly except for

a couple of what appear to be typographical errors in his article. This correlation

validates the dynamic routines of the program.
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Table 3: Dynamic response, deflection (w) and normal stress (a.), of a square
orthotropic plate under pulse uniform transverse pressure, Case 3.

time w.103 (=n) 0. (NM/ 2)

-(.Mw.) Reddy[231 2x2Q9 Reddy[23] 2x2Q9

10 0.0079 0.007963 2.986 2.986

20 0.0398 0.03985 24.64 24.64

40 0.1939 0.1939 132.2 132.2

60 0.4303 0.4303 282.1 282.1

80 0.5531 0.5531 359.3 359.3

100 0.5264 0.5264 349.7 349.7

120 0.3705 0.3705 34. 245.4

140 0.1779 0.1779 115.1 115.1

160 0.0353 0.03533 22.0 22.0

180 -0.0395 -0.03946 -20.97 -20.97

200 0.1105 0.1105 73.61 73.61

220 0.3296 0.3296 214.1 214.1

240 0.4781 0.4781 316.8 316.8

260 0.5548 0.5548 368.9 368.9

280 0.4797 0.4797 314.5 314.5

300 0_2006 0.3006 194.9 194.9

320 0.0840 0.08402 59.38 59.38

340 -0.0302 -0.03020 -18.53 -18.53

360 0.0459 0.04587 28.57 28.57



CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The primary objective of this work was to develop a program to analyze

general laminated composite plates under static and dynamic conditions using first-

order shear deformation theory. Several composite plate cases were used to validate

the computer code by comparing the results against other solution methods and results

found in literature. The following conclusions may be drawn from the results:

1. Based on the three cases, the program appears to correctly apply the first-

order shear deformation theory of composite plates to the finite element method.

2. Of the three element types used in the program, the 8 and 9-noded quadratic

elements give the best results with neither one showing clear superiority. The 4-noded

linear element appears to give less than adequate results compared to the two previous

element types.

3. The deflections predicted by the computer program show that shear

deformation effects can be significant beyond the usual range for isotropic materials

(a/h > 10). This is a clear demonstration for the need of a shear deformation theory

for the analysis of all but very thin composite plates.

4. Several authors have presented a complete treatment of classical plate

theory for composite plates. Because of length restrictions in published articles,

FSDT is often presented in abbreviated form. Current composite textbooks give only
68
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a cursory treatment of the first-order shear deformation theory and neglect to detail the

full importance of shear deformation in composite plates. This work represents a full

presentation of this theory combined into a single source.

Recommendations

Based on research in composite plate theories and the development of the

computer program, the following modifications and future research are anticipated:

1. This program should be used in advanced composite classes to give

students insight on the importance of shear deformation in composite plates and to

gain a better understanding of the finite element formulation of composite plate

theories.

2. This program could be used in conjunction with composite testing if funds

are available for future work. The program could be used in developing the size and

stacking sequence of the composite test specimen, and also the program results could

be directly compared with test results.

3. Because the environmental responses of composites are significant, thermal

and hygral (moisture) effects should be incorporated in future revisions of this

program.

4. The program provides easy application of a uniform transverse pressure.

Other types of transverse loading require a significant amount of work on the user's

part A subroutine should be developed to apply more general types of loading

functions, q = q(xy).

5. This program provides a good starting point to develop a program based on

higher-order shear deformation theories of composite plates. Because of the
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additional degrees of freedom required in these theories, a microcomputer-based

program appears to be prohibitive at present However, a program can be developed

on a larger system or in the future on smaller computers as memory management

problems are solved.



APPENDIX A

NAVIER SERIES SOLUTIONS

Navier proposed using a double Fourier series to solve certain differential

equations. This type of series was applied to the solution of plate governing equations

with particular shapes and boundary conditions. Because this solution satisfies the

plate governing equations and meets the applicable boundary conditions, it is viewed

as an exact solution of the plate theory used in the analysis. Since the series is

infinite, it is impossible to utilize all the terms. However taking enough terms in the

solution (mn < 50), the solution converges to the significant figures presented as

results in chapter V.

For this analytical solution, general transverse pressure, q(xy), on a

rectangular plate can be applied by use of the following Navier series:

q(x,y) = FYQ.. sin smsin (A-I)
r,-1a-I a b

The loading terms (Q,.) can be found by integrating equation A-1, and then

solving for Q_. This yields the following result:

Q. = 4_ bq(x,y)sin a sinbdydx (A-2)
b°J° o~ . a b
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Since the cases presented in the results utilize a uniformly applied transverse

pressure (q(xy) = q.), it is convenient to define the loading terms for this condition.

For a uniform transverse pressure, these terms result in the following expression:

Q=. = -4nqn 2 (1-_ cosmn)(l-_ cosn.1m) (A-3)

CASE 1: SYMMETRIC SPECIALLY-ORTHOTROPIC LAMINATES

Symmetric specially-orthotropic plates are often used to compare results

because they simplify the governing plate equations. For plates with simply-supported

edges, the analysis process can be accomplished by use of a Navier solution. This

type of plate is defined as being symmetric with respect to the laminate mid-plane and

whose bending-twisting coupling terms vanish. This translates to plate lay-ups with

the following material property simplifications:

A 13 = A23 = Bij = D13 = D23 = A 45 = 0 (A-4)

Classical Plate Theory Solution:

The CPT solution ignores shear deformation and is therefore independent of

thickness effects. This solution is used as a baseline case for very thin plates.

Whitney [33] provides a more complete treatment of this method. The following

boundary conditions are used for the CPT solution of the simply-supported rectangular

plate:
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w(O,y) = w(ay) = w(x,O) = w(xb) = 0

(X,0) = (x,b) = (Oy) = ý-(a,y) = 0 (A-5)
ax ON y ay

M1(0,y) = M,(a,y) = My(x,0) = My(x,b) = 0

With the given material property simplifications, the governing CPT equations

reduce to the following:

a4w (Aw -D w
D 1 W-+2( 12 +2DJ) 0- D -X4 (A-6)

The deflection function is chosen to satisfy the plate boundary conditions and

the simplified CPT governing equations and is given as::

w(x,y) = W sinm--sin-Y (A-7)
0-I8-I a b

By applying this function to the CPT equation, the following relation for the

constant W,= is obtained (with R = a/b):

a4 Qm
W. =x D..

where Dm = D,,m' +2(DI 2 +2D,)(mnR)2 +D,(nR)4  (A-8)

The in-plane stresses in the kth layer are defined by the following equations:

0") (x,yz) = a 2 -6-W -(k•m + Q")n'R 2 )sin mx-sin "Ky
=r-I 1 D= a b
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a(k)( _,,.-( k)2 +()n2R2)sinm!~sinmi (A-9)C--Z LZ. Z,---0,,en ,,, (-9= .. D..M. a b

t()(x,y,z)= -2 !Q('k)- 3 z Xi mnQ. Co 7XC. nzy

X rn-In- = a b

Note that CPT assumes that the transverse shear strains are negligible, and

therefore the transverse shear stresses are zero.

First-Order Shear deformation theory Navier solution:

Assume the following Navier Series displacements functions:

w(x'y) = L0L W. sin -sin ny

rn-la-I a b

W. (x, Y) = i X o ~ iM(A-10)
=-I a-I a b

W, (x,y) = t j %. sin , cos ny

k-I U-1 a b

These assumed displacement functions meet the following simply-supported

boundary conditions on the plate:

w(0,y) = w(a,y) = w(x,O) = w(x,b) = 0

w.(x,0) = ,(x,b) = WY (0,y) = wy(a,y) = 0 (A-i 1)

M.(0,y) = M.(a,y) = My(x,0) = M)(x,b) = 0

These assumed displaceme' t fields can be substituted into the governing

FSDT equations (3-40 to 3-43). Since the B matrix terms are zero, the in-plane
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displacements (uv) become uncoupled from the other generalized displaceme•A• (w,

W ,'y). Under static conditions with only transverse pressure applied, equations 3-40

to 3-43 reduce to the following equations:

ELI, L12  L 1 3 [I. 01

L1 3 L23 L33  WQ..

1,1 = D11a _ +D 33i0 +A 55

L12 = (D12 + D33)a*p
L13 = A,53s* (A-13)

L22 = D33ac + D223 + A4

L23 = A40.

L33 = A,5 a(m +A44M .

where a. = M and n•

a b

The solution of this equation yields the constants (W., 1 , ,"..) which

can be substituted into equation A-10 to determine the deflection and rotations of any

point on the plate mid-plane. The plate stresses are defined as:

y (k) (x,y,z)= -zi ý-)'P(Q ..._a. + 0')Py.3,)sina.xsinP3,y
in-Il at-l

a•(x,y,z) = z (3 + =a
real n-I

?•)(x,y,z)= z +, F_,ya.)cosa.xcosp.y (A-14)
21-/ r-I
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Ty (x,y,z)= FFM4 +W.O.)sinaaxcosO.y
M-I n-I

+iý(') (T.., + W.ao)cosa.xsinpoy

SW)(X~y,Y-Z) F,1+

S + w. a .)cosc.xsinp.y

CASE 2: ANGLE-PLY LAMINATES [-0±],

Angle-ply laminated plates are also used to compare results because they allow

the governing plate equations to be simplified, but still include bending-stretching

coupling. With certain boundary conditions, the analysis process does not require a

numerical solution. Angle-ply laminates are defined by a laminate stacking sequence

with fiber orientations alternating between +0 to -0 among consecutive layers. The

code for such laminates is [±O]. or [+0/-elm , where n is some integer multiple. This

translates to plate lay-ups with the following material property simplifications:

A13 = A 23 = B1 = B12 - B22 = B33 = D 13 = D23 = A 45 = 0 (A-15)

For this analytical solution, general transverse pressure on a square plate is

applied in the same manner as given in equations A- I to A-3.

q(x,y) = I F s m sn (A-16)
r-Ia2-I a b



77

Clamical Plate Theory Solution:

The CPT solution ignores shear deformation and is independent of the plate

thickness effects. This solution is used as a baseline case for very thin plates.

Whitney [33] provides a more complete treatment of this solution. The plate

considered here is rectangular with hinged-edges (free in the tangential direction). In

this case, the following boundary conditions apply along the edges:

w(Oy) = w(a,y) = w(x,O) = w(xb) = 0

u(O,y) = u(ay) = v(x,0) = v(xb) = 0

'w w 8w~y 8w(,
(0,y) -- (y) ) =-(x,0) -(x,b) - 0 (A-17)

8~y &y ax &x

N,2 (O,y) N, (ay) N,1 (x,0) = N.Y (x,b) = 0

M. (0,y)= M. (a,y)= M. (x,O) = M, (xb) = 0

With the material simplifications of angle-ply laminates, the governing CPT

differential equations become:

K,1  K12  K13  U 0

K13 K2 K33 - w 1

where:

XlI = All Jf + A3 02
W 33 a,2

K12 = (A12 + A 33).-
K13 =3B -- +13~

13 = 313 B -I+2 23B

K2= A33-2-+A -9- (A-19)
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Kn = B1 3 83 + 3B23

a,= D +- 2(D,, +2D33)a+D a,

The deflection finctions, equation A-20, are chosen to satisfy the plate

boundary conditions and the above simplified CPT governing equation:

u(x.y) = • U. sin m- cos nxY
rn-la.I a b

v(x,y) = V._ cosnxsiny (A-20)
a b

w(x,y) = " W. sin n7x sin nnY
a-IS tla b

By substituting these displacement functions into the CPT equations, the

following matrix equation results:ELI, L12  L13  U
L 12 L22 L23/,V = 0 (A-21)
L13 L23 L33 _ W--I QM

where:

L, = A,,a2- + A330!

L2 = (A 12 +A 3 3)a.3.

L13 = -3B, 3 ct- 3p - B230!

L = A 3 2a + A2 2J3 (A-22)

L23= -B, 3a., - 3B23(,.J

L33= D,,ai_ +2(DI2 +2D33)a2.3. +D 220!
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and a - and = .

a bK

The solution of these equations yields the constants (U., V.,W.) which

can be substituted into equation A-20 to determine the deflection and rotations of any

point on the plate mid-plane. These constants are also utilized to calculate the plate

stresses. The in-plane stresses in the kth layer are defined by the following equations:

k)(xyz) = ' [(Q, (uXa. + Q(2)V - 2z.Q13W a.1P.)cosa.xcosD.y
m-I U-I

+(zWM (j•(k 2 T+p2 (k)_, (U=.1.+
+(z ,)a. (~a +01 013) ( P + Vina. ))sina.xsinl3.y]

a(k)(xyz)= " m - + QkV - 2z7QW t.,P. )cosawxcosPy
mn-I n-I

+(zw=(0j, + ,,.)- + V,-(.a))sina.xsinp.y]

'• (x'y'z) = F 13 m"aw + - 2zQ3WOa.P.)cosa.xcosP.y
m-I 2-I

+(zw (, ,. + i ) -2 U(U.P. + V.,.))sinczxsinP.y

(A-23)

Again according to CPT, the transverse shear stresses are zero.

First-Order Shear Deformation Theory Solution

The plate considered here is rectangular with hinged-edges (free in the

tangential direction). In this case, the following boundary conditions apply along the

edges:
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w(O0y) = w(ay) = w(xO) = w(x,b) = 0

u(Oy) = u(a,y) = v(x,0) = v(x,b) = 0
•. (x,0) = w.•(x~b) = W,(0,y) = ~y(a,y) =0 (A-24)

M.(0,y) = M.(a,y) = My(x,0) = My(x,b) = 0

N , (O,y) = N,1 (a,y) = N, (x,0) = N. , (x,b) = 0

This solution requires five displacement functions. The following Navier

series functions satisfy the FSDT governing plate equations in chapter MI and the plate

boundary conditions:

u(x,y) I ) U. sin Cos
a b

V(Xy) =- V. cosfl'-!x sinr'gy

M-Ia=- a b

w(x,y) = sin ---- sin n (A-25)
rn-l -I a[ b

W. (x,y) = INP.3 cos m~x sin nly
a b

W,(x,y) = i TY . sin mr cos n"
-I la b

Substituting these displacement fields into the governing FSDT equations 3-40

to 3-43 yields:
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"L11 L12  L13 L14  Lis UrM 0

L 12 L22 L23 L2 L25 Vm 0
L13 L23 L33 L3 L35  W = QM (A-26)

L14 L2 L3 L44 L45 'F_[ 0

L15 L2. L35 L45 L55 'Iy.) 0

where the matrix terms are defined as:

L1= A,,a2 +A3.3P.

L12 = (Ai2 +A33)a.3.

L13 = 0

L14 = 2B1 3a1 3.

L22 = A33a2= +A2 20
L23 = 0

L 33 = A 55a2 +A,02.

L3 = A55%.,

L35 = A4403

L44 = D3a P +D 3 .3 +A35

L 43 = (D1 2 + D33 )a.M 3.

L55 = D 33a2 + D2202. + A44

(A-27)

and a .= -- , .3 = n
a b

The solution of this equation yields the constants (U..,V.., IWn I ,=M I TY)

which can be substituted into equation A-25 to determine the deflection and rotations

of any point on the plate mid-plane. The stresses may also be found by utilizing these

terms are defined as follows:
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0(k) (X, YZ) I p u= + iQl~V.p.. + 4 (k)xi + 'iymaa )oc.
=n-I rn-I 11 3 

)os

-ODY UP + Vmar..) + z(~'x.+

sinc~x sinD1.y]

a~~k) 12=an)= +522j3 + Z023q~j3 + 'Py.cz3 ))cosczx

cosp~ry - T~ (U~ p. TT.3 ) +

COIrn 0%)(ui + V-a + Z(012xc +52

sina*x sinornyI

(k) (X,Y, Z) = (kU + Wk~)sin.xcosIk +Q(W +y.~a. n

Y.aa smJ3.2y]Z33))osm

YZ (xk)) X~ (T~y. + WiuJ.D.)sinaC.xcosp~rY + 04sO. + Wg~jarn
0-1 rn-I

(A-28)



APPENDIX B

COMPUTER PROGRAM INFORMATION

COMPLATE Program Overview and Instructions

z'w

b h/2

x, h

Figure 17: Definition of coordinates on a rectangular plate.

This program was developed to analyze general laminated composite plates of

uniform thickness, h. The program uses first-order shear deformation of laminated

orthotropic plates in the analysis. The results from the program include the laminate

material property matrices, [A], [B], [D], the resulting mid-plane displacements and

rotations (u, v, w, wp1, W,) at plate nodal points, the laminate strains at the mid-plane

and on the laminate surfaces, and the interlaminar stresses at lamina interfaces. The

following paragraphs describe the user supplied requirements for the program. Figure

17 shows the coordinate system for an example rectangular plate.
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1. Program Control Parameters

The program uses several parameters to control the scope and output of the

program. TITLE is a one-line output heading used to describe the problem being

analyzed. The next two parameters dictate the element type used in the program. IEL

describes the order of the element (1 - linear, 2 - quadratic). NPE is the number of

nodes per element (4 if IEL = 1, 8 or 9 if EEL = 2). IMESH is the parameter used to

control whether a rectangular mesh is generated (IMESH = 1) or all mesh information

is input for a general shape mesh (IMESH = 0). NPRNT is used to control the printing

of element stiffness matrices and force vectors (0 - not printed, I - printed). ITEM

indicates whether the analysis is static (= 0) or dynamic (= 1). The next three

parameters, NTIME, NSTEP and NOZERO, are parameters for the dynamic analysis

case and are describes under that section.

2. Shape of Plate (FEM Mesh)

This program has two methods for generating the plate mesh. Rectangular

plate meshes can be generated by entering the number of divisions between nodal

points along the x and y-axes, NX and NY, and the lengths of each division, DX(I)

and DY(I) in the x and y directions respectively. These divisions do not have to have

uniform lengths because each length is supplied.

General plate shapes require their meshes to be entered by the user. The user

must provide the number of elements, NEM, the number of nodal points, NNM, the

element connectivity of the nodal points, NOD(I,J), and the coordinates of the nodal

points, X(I) and Y(I). The plate can therefore be any user defined shape including

curved edges, but must have a uniform thickness. The user is encouraged to use other

mesh generation programs to develop general shaped (non-rectangular) meshes.
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3. Element Types

There are three types of quadrilateral isoparametric elements in this program.

Each nodal point in the element has five degrees of freedom or generalized

displacements (u, v, w, %, W,). The three types of elements are four-node linear,

eight-node quadratic, and nine-node quadratic elements as shown in Figure 18.

4-Node 8-Node 9-Node

4 3 4 7 3 4 7 3

9
8 6 8 9 6

2 1 5 2 1 5 2

Figure 18: Element types and nodal point numbers.

The four, eight, and nine-noded elements produce element matrices of 20x20, 40x40,

and 45x45, respectively. The order of these matrices is defined by the number of

degrees of freedom per node. IEL and NPE control the type of element used as

described in section 1.

The interpolation functions used for these elements are isoparametric and

belong to the Lagrange family. This allows the element sides to be non-straight (for

quadratic elements). Full-integration is used for all stiffness terms except for those

terms involving traverse shear coefficients (A., A45, A.,) in which a reduced-

integration scheme is used. The reduced-integration is performed to prevent shear-

locking effects.
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4. Types of Materials and Stacking Sequence

This program was developed for general laminated composite plates including

hybrid composites. The user supplies the number of different composite materials,

NMTL in the laminate, and the material properties of each material (1):

Elastic moduli - El - El1(), E2 - E2(I)
Shear moduli - G12 - G12(I), G13 - G13(I), G23 - G23(I)

Poisson's Ratio - v1 - ANU12(I)
Material density - p - RHO(I)

Laminated plates have the following characteristics. The laminate is formed

by stacking a number of orthotropic material layers, NLAY, in a desired sequence.

Each layer, L, can have different principal material orientations defined in degrees

from the x-axis, THETA(L), be made of different materials defined by the material

number I, MTL(L), and have varied thicknesses, TH(L). The program is also able to

analyze isotropic materials, orthotropic materials and hybrids made of these materials.

5. Displacement on Boundaries and Loading Conditions

This program accommodates general boundary conditions by allowing the user

to specify the number of displacement conditions, NBDY, the location and direction

of the displacement (u, v, w, y, Wy), IBDY(I), and the corresponding value of the

generalized displacements, VBDY(I), for any nodal point

There are two ways to apply loads to the plate. A uniformly distributed

transverse load can be applied by specifying the magnitude and direction, PO

(positive-upward, negative-downward), of the pressure. Other loads are applied by

specifying the number of specified forces, NSBF, the nodal point location and
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generalized direction, IBSF(I), and magnitude of the load at the nodal points, VBSF(I),

in the form (Nx, Ny, Qz, Mx, My) corresponding to the generalized displacements.

By default, all generalized displacements are assumed to be free to move and

all forces are assumed to be zero. The displacement and force vectors each have five

times the number of nodes entries. The ordering of the displacement and force

vectors are shown below:

Displacement Vector- {{u,v, w, , IWy },I •,UVW, 'W, Y} ,...}

Force Vector - {{NX ,NY ,Q,M" ,M}-',{N,Ny,Q,M ,MY} ,...} (B-I)

To change a boundary condition from the default conditions, the user must

supply the position of the displacement or force in its respective vector and the value

of that condition. For example, to specify a displacement of 10 in the y-direction on

node 3, the user would give 12 for its position in the vector and 10.0 for its value.

One of each of the following boundary condition pairs must be specified along

the plate edges :

Nnoru., N. oru,, Q.orw, M.orwp, M..orw. (B-2)

The following list describes the applicable force and displacement values for

some commonly used boundary conditions. The coordinates n and s refer to the

outward normal and the in-plane tangential axes along the plate edges respectively.

For example on an an x-edge (x = a), n corresponds to the x-axis and s corresponds to

the y-axis.
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1. Simply-Supported Edge

NU=0, N.=0, w=0, MR=0,y Y=0 (B-3)

2. Hinged Edge - Free in the normal direction
N*=0, ui=0, w=0, MO=0, %P$=O (B4)

3. Hinged Edge - Free in the tangential direction
u. =0, N =0, w=0, M.=0, ', =0 (B-5)

4. Clamped Edge
uU=0, u1 =0, w=0, W.=0, %',=0 (B-6)

5. Free Edge
NS=0, NW=0, QM=0, MM=0, MW=0 (B-7)

6. Line of Symmetry (for symmetrical finite element problems)
u1 =0, No =0, Qn=0, WO =0, MW=0 (B-8)

6. Dynamic Analysis

This program can analyze many different dynamic cases. For the general

dynamic case (TEM1--), the user must supply the number of time steps, NTIME, the

time step size, DT, alpha from Newmark's method, ALFA, and the time step at which

the transverse pressure is removed, NSTP. Additionally, initial generalized

displacements and generalized velocities can be specified to add to the range of

dynamic cases covered by the program. In this case, all the values of the initial

displacements, GFO(I), and velocities, GFI(0) of each nodal point must be entered in

the following order:

Displacement Vector - {{ u, v, w, %P. , %y}P , { u, vw,MW.j , dy } ,...}

Velocity Vector - {{u, i, v,w* p 1 * } ' ,{u, i w ,' * * (B-9)
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Computer Program Structure (COMPLATE)

Figure 19 shows the general program structure of COMPLATE with all

subroutine calls. The dashed boxes denote optional features of the program depending

on control parameters. This is provided as a reference for understanding the source

code.

MAIN PROGRAM SUBROUTINES

Open Data File

Read Mesh Mesh Generation (MESH)

Read Other Data PRE-PROCESSOR
I

Compute Material Propetses Material Props (MATPROP)

Print Mesh/Material info

Compute Half-Band Width

Compute Element Matrices Element Stiffness (STIFF) Shape Functions (SHAPE)

Add Force Conditions

Add Displacement Cond's I-I ondary Conditions(BNDllj

Solve Global Equation I"Equation Solver (SOLVE)
r L

I Dynamic Calculations

Print Displacements IPROCESSOR

calculate Streasear/Strains I-'1Streases/Strains (STIRESS) •1Shape Functions(SAE

I
Formats POST-PROCESSOR

Figure 19: Computer program structure.
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Data File Format

The following list describes the input format for COMPLATE. The data is

read in using "free-form" format. This means the data may be separated by spaces or

commas and the only important aspect is the order of variables in the data file. The

following list provides a suggested format for ease in visually reading and adjusting

the input file. Descriptions of all variables used in the program can be found at the

top of the program source code or at the top of each subroutine. DATA LINE(S)

outlines how the input is separated into sections or lines. Some DATA LINES require

more than one actual input line depending on the number of variables to be read in.

The information under the TYPE column describes the data type of the variable: Ann

- character string of nn characters, I - integer (no decimal point); F - fixed-point

(decimal point required). An example input file is given following this list for clarity.

VARIABLE TYPE VARIABLE DESCRIPTION AND NOTES

DATA LINE I OUTPUT HEADING - (80 characters)

TITLE A80 Title for output file - description of problem

DATA LINE 2 PROGRAM PARAMETERS

IEL I Element type (1 = four node, 2 = eight or nine node)
NPE I Nodes per element (4 if lEL=1, 8 or 9 if IEL=2)
IMESH I Indicator for rectangular mesh generation

(0 - all element information is read in
1 - rectangular mesh is generated)

NPRNT I Indicator for printing the element stiffness matrices
and force vectors (0 - no printing, 1 - printing)

ITEM I Indicator for transient analysis (0 - static, 1 - transient)
NTIME I Total number of time steps (0 for ITEM = 0)
NSTP I Time step number at which loading is removed
NOZERO I Indicator for initial transient load conditions

(0 - zero initial load, 1 - non-zero initial load)
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* SKIP LINES 3,4, AND 5 IF IMESH = 1 (MESH GENERATED) ***

DATA LINE 3 READ MESH PARAMETERS

NEM I Number of elements in the mesh
NNM I Number of nodes in the mesh

DATA LINE(S) 4 MESH CONNECTIVITY - NEM lines, NPE per line

NOD(I,J) F Connectivity of I-th element (J = I,NPE)

DATA LINE(S) 5 NODAL COORDINATES

X(I), Y(I) F Global coordinates of I-th node

*** SKIP LINES 6,7, AND 8 IF IMESH = 0 (GENERAL MESH)***

DATA LINE 6 MESH GENERATION PARAMETERS

NX I Number of element subdivisions along the x-axis
NY I Number of element subdivisions along the y-axis

DATA LINE(S) 7 X-DMSIONS - IEL*NX Entries

DX(I) F Distance between two nodes along the x-axis

DATA LINE(S) 8 Y-DIVISIONS - IEL*NY Entries

DY(I) F Distance between two nodes along the y-axis

DATA LINE 9 MATERIALS

NMTL I Number of different materials in the laminate

DATA LINE(S) 10 MATERIAL I PROPERTIES - NMTL lines
El(I) F Modulus along fiber direction (I-direction)
E2(I) F Modulus transverse to fiber direction (2-direction)
G12(I) F In-plane shear modulus oriented along fiber direction
G13(I) F Shear modulus with respect to 1-3 plane
G23(I) F Shear modulus with respect to 2-3 plane
ANUI2(I) F In-plane Poisson's ratio (1-2 plane)
RHO(I) F Material Density
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DATA LINE 11 NUMBER OF LAMINA

NLAY I Number of lamina (layers) in the laminate

DATA LINE(S) 12 LAMINA PROPERTIES - NLAY lines

MTI-0) I Material number of I-th lamina
THETA(I) F Fiber orientation angle of I-th lamina (in degrees)
TH(I) F Thickness of I-th lamina

DATA LINE 13 UNIFORM TRANSVERSE LOADING

P0 F Intensity of uniformly distributed transverse load

DATA LINE 14 SPECIFIED DISPLACEMENTS (cannot be zero)

NBDY I Number of specified generalized displacements

DATA LINE(S) 15 DISPLACEMENTS - NBDY entries

IBDY(I) I Location/direction of specified displacement I
Order - by node number and (u, v, w, w, w')

DATA LINE(S) 16 DISPLACEMENT VALUES - NBDY entries

VBDY(I) F Value of displacement corresponding to IBDY(I)

DATA LINE 17 SPECIFIED FORCES

NBSF I Number of specified generalized forces

* SKIP LINES 18 AND 19 IF NBSF =0 (NO FORCE CONDITIONS OTHER
THAN TRANSVERSE PRESSURE) *

DATA LINE(S) 18 FORCES - NBSF entries

IBSF(I) I Location/direction of specified generalized forces
Order - by node number and (Nx, Ny, Qz, Mx, My)

DATA LINE(S) 19 FORCE VALUES - NBSF entries, 8 per line

VBSF(I) F Value of specified force corresponding to IBSF(I)
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* SKIP LINES 20,21, AND 22 IF ITEM = 0 (STATIC ANALYSIS) *

DATA LINE 20 TRANSIENT PARAMETERS

DT F Time step for transient analysis
ALFA F Parameter in Newmark's method

*** SKIP LINES 21 AND 22 IF NOZERO = 0 (NO INITIAL CONDITIONS) *

DATA LINE(S) 21 INITIAL DISPLACEMENTS. - NNM*NDF entries

GFO(I) F Initial value of generalized displacement for I-th
degree of freedom (DOF)

DATA LINE(S) 22 INITIAL VELOCITY - NNM*NDF entries

GFI(I) F Initial value of generalized velocity for I-th DOF

Sample Input Data File

STATIC BENDING OF A SIMPLY SUPPORTED PLATE UNDER UNIFORM LOAD (2X209 MESH)
2 9 1 0 0 1 0 0
2 2

1.25 1.25 1.25 1.25
1.25 1.25 1.25 1.25
1
25.E6 1.E6 0.5E6 0.5E6 0.2E6 0.25 0.3
3
1 0.0 0.033333
1 90.0 0.033334
1 0.0 0.033333
1.0

37
1 2 4 5 7 10 12 15 17 20 22 23 25 26 29

48 50 51 54 73 75 76 79 98 100 101 103 104 108 109
113 114 118 119 123 124 125

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0

0
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Sample Output File

The following output corresponds to the previous input file.

STATIC BENDING OF A SIMPLY SUPPORTED PLATE UNDER UNIFORM LOAD (2X209 MESH)

ELEMENT TYPE(1-LINEAR.2-OUADRATIC) - 2 NODES PER ELEMENT- 9
ACTUAL NUMBER OF ELEMENTS IN THE MESH- 4
NUMBER OF NODES IN THE MESH - 25
DEGREES OF FREEDOM - 5

MATERIAL 1 PROPERTIES:
MODULUS.El- 0.25000E+08
MODULUS.E2- 0.10000E+07
SHEAR MODULUSG12- 0.50000E+06
SHEAR MODULUS.G13- 0.50000E+06
SHEAR MODULUS.G23- 0.20000E+06
POISSONS RATIONU12- 0.25000E+00
MATERIAL DENSITY.RHO- O.30000E+O0

LAMINATE STACKING SEQUENCE

LAYER MTL # THETA THICKNESS
1 1 0.00000 0.33333E-01
2 1 90.00000 0.33334E-01
3 1 0.00000 0.33333E-01

TOTAL THICKNESS - 0.10000E+O0

LAMINATE PLATE PROPERTIES

A MATRIX TERMS
0.17042E+07 0.25063E+05 O.OOOOOE+00
0.25063E+05 0.90227E+06 O.OOOOOE+O0
O.OOOOOE+O0 O.OOOOOE+O0 0.50000E+05

B MATRIX TERMS
O.OOOOOE+OO O.OOOOOE+O0 O.OOOOOE+0O
O.OOOOOE+OO O.OOOOOE+O0 O.OOOOOE+O0
O.OOOOOE+O0 O.OOOOOE+O0 O.OOOOOE+0O

D MATRIX TERMS
0.20143E+04 0.20886E+02 O.OOOOOE+0O
0.20886E+02 0.15781E+03 O.OOOOOE+O0
O.OOOOOE+OO O.OOOOOE+O0 0.41667E+02

SHEAR TERMS: A44, A45. A55
0.25000E+05 O.OOOOOE+O0 0.33333E+05

INERTIAL TERMS 11, 12, 13
O.30000E-01 O.OOOOOE+O0 0.25000E-04

NUMBER OF SPECIFIED DISPLACEMENTS- 37
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SPECIFED DISPLACEMENTS AND THEIR VALUES FOLLOW:

1 O.OOOOE+OO 2 O.OOO00E+OO 4 O.OOOOOE+OO
5 O.OOOOOE+OO 7 O.OOOOOE+OO 10 U.OOOOOE+OO

12 O.OOOOOE+OO 15 O.OOOOOE+00 17 O.OOOOOE+00
20 O.OOOOOE+O0 22 O.OOOOOE+O0 23 O.OOOOOE+OO
25 O.OOOOOE+OO 26 O.OOOOOE+O0 29 O.OOOOOE+OO
48 O.OOOOOE+OO 50 O.OOOOOE+O0 51 O.OOOOOE+O0
54 O.OOOOOE+OO 73 O.OOOOOE+OO 75 O.OOOOOE+OO
76 O.OOOOOE+O0 79 O.OOOOOE+OO 98 O.OOOOOE+OO

100 O.OOOOOE+O0 101 O.OOOOOE+O0 103 O.O0OOOE+O0
104 O.OOOOOE+O0 108 O.OOOOOE+O0 109 O.OOOOOE+O0
113 O.OOOOOE+OO 114 O.OOOOOE+O0 118 O.OOOOOE+0O
119 O.OOOOOE+OO 123 O.OOOOOE+O0 124 O.OOODOE+O0
125 O.OOOOOE+O0

UNIFORMLY DISTRIBUTED LOAD. PO - O.10000E+O1

NUMBER OF SPECIFIED FORCES- 0
SPECIFIED FORCE DEGREES OF FREEDOM AND THEIR VALUES FOLLOW:

BOOLEAN (CONNECTIVITY) MATRIX-NOD(I.J)

1 1 3 13 11 2 8 12 6 7
2 3 5 15 13 4 10 14 8 9
3 11 13 23 21 12 18 22 16 17
4 13 15 25 23 14 20 24 18 19

COORDINATES OF THE GLOBAL NODES:

1 O.OOOOOE+00 O.OOOOOE+OO 2 O.12500E+01 O.OOOOE+00
3 0.25000E+01 O.OOOOOE+OO 4 0.37500E+01 O.OOOOQE+O0
5 O.50000E+O1 O.OOOOOE+O0 6 O.OOOOOE+OO 0.12500E+01
7 0.12500E+01 0.12500E+01 8 O.25000E+01 0.12500E+01
9 0.37500E+01 0.12500E+01 10 O.5000OE+O1 O.12500E+O1

11 O.OOOOOE+OO O.25000E+01 12 0.12500E+01 O.25000E+O1
13 O.25000E+01 O.25000E+01 14 0.37500E+01 O.25000E+O1
15 O.50000E+01 O.25000E+O1 16 O.OOOOOE+00 0.37500E+01
17 0.12500E+01 0.37500E+01 18 O.25000E+O1 0.37500E+01
19 0.37500E+01 0.37500E+01 20 0.50000E+O1 O.37500E+01
21 O.OOOOOE+O0 O.5OOOOE+O1 22 0.12500E+01 0.50000E+O1
23 0.25000E+01 0.50000E+01 24 0.37500E+01 0.50000E+O1
25 0.5000E+01 O.50000E+O1

HALF BAND WIDTH OF GLOBAL STIFFNESS MATRIX - 65

GENERALIZED DISPLACEMENTS (U.V.WSXSY) PER NODE

1 O.OOOOOE+OO O.OOOOOE+O0 0.67040E-01 O.OOOOOE+OO O.OOOOOE+OO
2 O.OOOOOE+OO O.OOOOOE+O0 0.62012E-01 0.78426E-02 O.OOOOOE+O0
3 O.OOOOOE+OO O.OOOOOE+OO 0.47771E-01 0.14677E-01 O.00000E+00
4 O.OOOOOE+O0 O.OOOOOE+O0 0.25989E-01 0.19509E-O1 O.OOOOOE+00
5 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+00 0.21343E-01 O.OOOOOE+G0
6 O.OOOOOE+00 O.OOOOOE+OO 0.63455E-01 O.OOOOOE+00 0.59374E-02
7 O.OOOOOE+0O O.OOOOOE+OO 0.58703E-01 0.74048E-02 0.54801E-02
8 O.OOOOOE+O0 O.OOOOOE+OO 0.45230E-01 0.13868E-01 0.41977E-02
9 O.OOOOOE+OO O.OOOOOE+OO 0.24611E-01 0.18440E-01 0.22724E-02
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10 0.OOOOOE+00 O.OOOOOE+OO O.OOOOOE+OO O.20175E-Ol O.OOOOOE+O0
11 O.OOOOOE+OO O.OOOOOE+OO O.51706E-O1 O.OOOOOE+OO O.13060E-Ol
12 0.OOOOOE+OO O.OOOOOE+OO 0.47869E-01 0.59961E-02 0.12039E-01
13 O.OOOOOE+O0 O.OOOOOE+OO O.36951E-01 0.11279E-Ol 0.91828E-02
14 O.OOOOOE+O0 O.OOOOOE+OO O.20143E-O1 0.1509OE-01 0.49446E-02
15 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.1656OE-Ol O.DODOOE+O0
16 O.OOOOOE+00O0.OOOOOE+O0 0.29794E-01 O.DOOOOE+0D 0.21322E-Ol
17 O.OOOOOE+00 O.OOOOOE+00 0.2762OE-01 0.34017E-02 0.19733E-01
18 O.OOOOOE+00 O.OOOOOE+00 0.21398E-O1 0.64412E-02 0.15228E-Ol
19 0.OOOOOE+00 0.OOOOOE+O0 0.11718E-01 0.87228E-02 0.82896E-02
20 O.OOOOOE+OO O.OOOOOE+O0 0.OOOOOE+O0 0.96390E-02 O.OOOOOE+0O
21 0.OOOOOE+0O O.OOOOOE+O0 O.0OOO0EE+OO 0.OOOOOE+OO 0.25620E-01
22 0.OOOOOE+O0O0.OOOOOE+O0O0.OOOOOE+O0 O.OOOOOE+OO 0.23769E-01
23 O.OOOOOE+O0 O.OOOOOE+OO O.OOOOOE+O0 0.OOOOOE+OO 0.18493E-01
24 O.O0OOOOE+O0 0.OOOOOE+0O O.OOOODE+0O O.OOOOOE+O0 0.10180E-01
25 0.OOOODE+O0 O.OOOOOE+0O O.OODOOOE+00 0.OOOOOE+OO O.OOOOOE+OO

LAMINATE STRAINS AND STRESSES AT GAUSS POINTS

(X-COORD.Y-COORD)
LOC EPSILONX EPSILONY GAMMAXY K.APPAX KAPPAY KAPPAXY
LAY Z-COORD SIGMAX SIGMAY SIGMAXY SIGMAYZ SIGMAXZ

( 0.5283E+00. 0.5283E+00)
MID O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO 0.6283E-02 0.4604E-02 -0.2520E-03
BOT -0.3141E-03 -0.2302E-03 0.1260E-04
TOP 0.3141E-03 0.2302E-03 -0.1260E-04
1 -0.5OOOE-01 -0.7931E+04 -0.3095E+03 0.6300E+0I 0.4125E+00 -0.8524E+01
1 -0.1667E-01 -0.2644E+04 -0.1032E+03 0.2100E+01 0.4125E+00 -0.8524E+01
2 -0.1667E-01 -0.1242E+03 -0.1949E+04 0.2100E+01 0.1031E+01 -0.3410E4-01
2 O.1667E-O1 0.1242E+03 0.1949E+04 -0.2100E+01 0.1031E+01 -0.3410E+01
3 O.1667E-O1 0.2644E+04 0.1032E+03 -0.2100E+01 0.4125E+00 -0.8524E+01
3 O.5000E-O1 0.7931E+04 0.3095E+03 -0.6300E+01 0.4125E+00 -0.8524E+01

( 0.5283E+00, 0.1972E+01)
MID O.OODOE+OO O.DOOOOE+O0 O.OOOOE+OO 0.5419E-02 0.5678E-02 -0.1055E-02
BOT -0.2710E-03 -0.2839E-03 0.5277E-04
TOP 0.2710E-03 0.2839E-03 -0.5277E-04
1 -O.5000E-O1 -0.6862E+04 -0.3525E+03 0.2639E+02 0.4592E+00 -0.7366E+01
1 -0.1667E-01 -0.2287E+04 -0.1175E+03 0.8795E+01 0.4592E+00 -0.7366E+01
2 -0.1667E-01 -0.1143E+03 -0.2394E+04 0.8795E+01 0.1148E+01 -0.2946E+01
2 O.1667E-D1 0.1143E+03 0.2394E+04 -0.8795E+0-1 0.1148E+01 -0.2946E+01
3 0.1667E-01 0.2287E+04 0.1175E+03 -0.8795E+01 0.4592E+00 -0.7366E+01
3 O.5000E-O1 0.6862E+04 0.3525E+03 -0.2639E+02 0.4592E+00 -0.7366E+01

( 0.1972E+01. 0.5283E+00)
MID O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO 0.5359E-02 0.3815E-02 -0.8633E-03
BOT -0.2680E-03 -0.1907E-03 0.4316E-04
TOP 0.2680E-03 0.1907E-03 -0.4316E-04
I -O.5OOOE-O1 -0.6763E+04 -0.2584E+03 0.2158E+02 0.3032E+00 -0.3156E+02
1 -0.1667E-01 -0.2255E+04 -0.8612E+02 0.7194E+01 0.3032E+00 -0.3156E+02
2 -0.1667E-01 -0.1055E+03 -0.1616E+04 0.7194E+01 0.7579E+0-0 -0.1263E+02
2 0.1667E-01 0.1055E+03 0.1616E+04 -0.7194E+01 0.7579E+00 -0.1263E+02
3 O.1667E-O1 0.2255E+04 0.8612E+02 -0.7194E+01 0.3032E+00 -0.3156E+02
3 O.SDOOE-01 0.6763E+04 0.2584E+03 -0.2158E+02 0.3032E+00 -0.3156E+02
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( 0.1972E+01. 0.1972E+01)

MID O.OOOOE+O0 O.OOOOE+O0 O.OOOOE+O0 0.4653E-02 0.4676E-02 -0.3595E-02
BOT -0.2327E-03 -0.2338E-03 0.1797E-03
TOP 0.2327E-03 0.2338E-03 -0.1797E-03
I -0.5000E-01 -0.5890E+04 -0.2927E+03 0.8987E+02 0.4438E+00 -0.2798E+02
I -0.1667E-01 -0.1963E+04 -0.9758E+02 0.2996E+02 0.4438E+00 -0.2798E+02
2 -0.1667E-01 -0.9728E+02 -0.1973E+04 0.2996E+02 O.11IOE+01 -0.1119E+02
2 0.1667E-O1 0.9728E+02 0.1973E+04 -0.2996E+02 0.1110E+01 -0.1119E+02
3 0.1667E-01 0.1963E+04 0.9758E+02 -0.2996E+02 0.4438E+00 -0.2798E+02
3 0.5000E-01 0.5890E+04 0.2927E+03 -0.8987E+02 0.4438E+00 -0.2798E+02

( 0.3028E+01. 0.5283E+00)
MID O.OOOOE+O0 O.OOOOE+O0 O.OOOOE+O0 0.4011E-02 0.2702E-02 -0.1229E-02
BOT -0.2005E-03 -0.1351E-03 0.6144E-04
TOP 0.2005E-03 0.1351E-03 -0.6144E-04
1 -0.5000E-01 -0.5060E+04 -0.1857E+03 0.3072E+02 0.1910E+00 -0.4811F+02
1 -0.1667E-01 -0.1687E+04 -0.6191E+02 0.1024E+02 0.1910E+00 -0.4811E+02
2 -0.1667E-01 -0.7830E+02 -0.1146E+04 0.1024E+02 0.4775E+00 -0.1924E+02
2 0.1667E-01 0.7830E+02 0.1 46E+04 -0.1024E+02 0.4775E+00 -0.1924E+02
3 0.1667E-O1 0.1687E+04 0.6191E+02 -0.1024E+02 0.1910E+00 -0.4811E+02
3 0.5000E-01 0.5060E+04 0.1857E+03 -0.3072E+02 0.1910E+00 -0.4811E+02

( 0.3028E+01. 0.1972E+01)
MID O.OOOOE+O0 O.OOOOE+O0 O.OOOOE+O0 0.3516E-02 0.3280E-02 -0.5039E-02
BOT -0.1758E-03 -0.1640E-03 0.2520E-03
TOP 0.1758E-03 0.1640E-03 -0.2520E-03
1 -0.50OOE-01 -0.4447E+04 -0.2085E+03 0.1260E+03 0.1813E+00 -0.4337E+02
1 -0.1667E-01 -0.1482E+04 -0.6949E+02 0.4200E+02 0.1813E+00 -0.4337E+02
2 -0.1667E-01 -0.7244E+02 -0.1385E+04 0.4200E+02 0.4533E+00 -0.1735E+02
2 0.1667E-01 0.7244E+02 0.1385E+04 -0.4200E+O2 0.4533E+00 -0.1735E+02
3 0.1667E-01 0.1482E+04 0.6949E+02 -0.4200E+02 0.1813E+00 -0.4337E+02
3 0.50OOE-01 0.4447E+04 0.2085E+03 -0.1260E+03 0.1813E+00 -0.4337E+02

( 0.4472E+01. 0.5283E+00)
MID O.OOOOE+O0 O.OOOE+O00 O.OOOOE+O0 0.1266E-02 0.7917E-03 -0.1505E-02
BOT -0.6329E-04 -0.3958E-04 0.7524E-04
TOP 0.6329E-04 0.3958E-04 -0.7524E-04
I -0.5000E-01 -0.1596E+04 -0.5554E+02 0.3762E+02 0.1455E+00 -0.7036E+02
1 -0.1667E-01 -0.5321E+03 -0.1852E+02 0.1254E+02 0.1455E+00 -0.7036E+02
2 -0.1667E-01 -0.2446E+02 -0.3360E+03 0.1254E+02 0.3639E+00 -0.2814E+02
2 0.1667E-01 0.2446E+02 0.3360E+03 -0.1254E+02 0.3639E+00 -0.2814E+02
3 0.1667E-O1 0.5321E+03 0.1852E+02 -0.1254E+02 0.1455E+00 -0.7036E+02
3 0.5000E-01 0.1596E+04 0.5554E+02 -0.3762E+02 0.1455E+00 -0.7036E+02

( 0.4472E+01. 0.1972E+01)
MID O.OOOOE+O0 O.OOOOE+l O.OOOOE+O0 0.1121E-02 0.9492E-03 -0.6048E-02
BOT -0.5606E-04 -0.4746E-04 0.3024E-03
TOP 0.5606E-04 0.4746E-04 -0.3024E-03
I -0.5000E-01 -0.1417E+04 -0.6163E+02 0.1512E+03 0.2988E-01 -0.6418E+02
I -0.1667E-01 -0.4723E+03 -0.2054E+02 0.5040E+02 0.2988E-01 -0.6418E+02
2 -0.1667E-01 -0.2270E+02 -0.4012E+03 0.5040E+02 0.7469E-01 -0.2567E+02
2 0.1667E-01 0.2270E+02 0.4012E+03 -0.5040E+02 0.7469E-01 -0.2567E+02
3 0.1667E-01 0.4723E+03 0.2054E+02 -0.5040E+02 0.2988E-01 -0.6418E+02
3 0.5000E-01 0.1417E+04 0.6163E+02 -0.1512E+03 0.2988E-01 -0.6418E+02

( 0.5283E+00. 0.3028E+01)
MID O.OOOOE+O00 O.OOOOE+O00 O.OOOOE+O0 0.4034E-02 0.6765E-02 -0.1782E-02
BOT -0.2017E-03 -0.3382E-03 0.8912E-04
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TOP 0.2017E-03 0.3382E-03 -0.8912E-04
I -O.5000E-01 -0.5139E+04 -0.3896E+03 0.4456E+02 -0.1323E+01 -0.4661E+01
1 -0.1667E-01 -0.1713E+04 -0.1299E+03 0.1485E+02 -0.1323E+01 -0.4661E+01
2 -0.1667E-01 -0.9565E+02 -0.2843E+04 0.1485E+02 -0.3306E+01 -0.1865E+01
2 0.1667E-O1 0.9565E+02 0.2843E+04 -0.1485E+02 -0.3306E+01 -0.1865E+01
3 0.1667E-O1 0.1713E+04 0.1299E+03 -0.1485E+02 -0.1323E+01 -0.4661E+01
3 0.50OOE-01 0.5139E+04 0.3896E+03 -0.4456E+02 -0.1323E+01 -0.4661E+01

( 0.5283E+00. 0.4472E+01)
MID O.OOOOE+O0 O.OOOOE+O0 O.OOOOE+O0 0.1239E-02 0.3158E-02 -0.2425E-02
BOT -0.6193E-04 -0.1579E-03 0.1213E-03
TOP 0.6193E-04 0.1579E-03 -0.1213E-03

I -0.5000E-01 -0.1592E+04 -0.1738E+03 0.6063E+02 -0.8194E+01 -0.1608E+01
1 -0.1667E-01 -0.5306E+03 -0.5794E+02 0.2021E+02 -0.8194E+01 -0.1608E+01
2 -0.1667E-01 -0.3389E+02 -0.1324E+04 0.2021E+02 -0.2049E+02 -0.6432E+00
2 0.1667E-01 0.3389E+02 0.1324E+04 -0.2021E+02 -0.2049E+02 -0.6432E+00
3 0.1667E-O1 0.5306E+03 0.5794E+02 -0.2021E+02 -0.8194E+01 -0.1608E+01
3 0.5000E-01 0.1592E+04 0.1738E+03 -0.6063E+02 -0.8194E+01 -0.1608E+01

( 0.1972E+01. 0.3028E+01)
MID O.OOOOE+O00 O.OOOOr+OO O.OOOOE+O0 0.3510E-02 0.5699E-02 -0.6142E-02
BOT -0.1755E-03 -0.2849E-03 0.3071E-03
TOP 0.1755E-03 0.2849E-03 -0.3071E-03

1 -0.5000E-01 -0.4470E+04 -0.3297E+03 0.1535E+03 -0.9461E+00 -0.1815E+02
1 -0.1667E-01 -0.1490E+04 -0.1099E+03 0.5118E+02 -0.9461E+00 -0.1815E+02
2 -0.1667E-01 -0.8246E+02 -0.2395E+04 0.5118E+02 -0.2365E+01 -0.7258E+01
2 0.1667E-O1 0.8246E+02 0,2395E+04 -0.5118E+02 -0.2365E+01 -0.7258E+01
3 0.1667E-O1 0.1490E+04 0.1099E+03 -0.5118E+02 -0.9461E+00 -0.1815E+02
3 O.5000E-OI 0.4470E+04 0.3297E+03 -0.1535E+03 -0.9461E+00 -0.1815E+02

( 0.1972E+01, 0.4472E+01)
MID O.OOOOE+O0 O.OOOOE+O0 O.OOOOE+O0 0.1096E-02 0.2723E-02 -0.8488E-02
BOT -0.5479E-04 -0.1361E-03 0.4244E-03
TOP 0.5479E-04 0.1361E-03 -0.4244E-03
1 -0.5000E-01 -0.1407E+04 -0.1502E+03 0.2122E+03 -0.7229E+01 -0.6760E+01
I -0.1667E-01 -0.4691E+03 -0.5007E+02 0.7074E+02 -0.7229E+01 -0.6760E+01
2 -0.1667E-01 -0.2968E+02 -0.1142E+04 0.7074E+02 -0.1807E+02 -0.2704E+01
2 0.1667E-O1 0.2968E+02 0.1142E+04 -0.7074E+02 -0.1807E+02 -0.2704E+01
3 0.1667E-O1 0.4691E+03 0.5007E+02 -0.7074E+02 -0.7229E+01 -0.6760E+01
3 0.5000E-01 0.1407E+04 0.1502E+03 -0.2122E+03 -0.7229E+01 -0.6760E+01

( 0.3028E+01, 0.3028E+01)
MID O.OOOOE+O0 O.OOOOE+O00 O.OOOOE+O0 O.2727E-02 0.4125E-02 -0.8732E-02
BOT -0.1364E-03 -0.2062E-03 0.4366E-03
TOP 0.1364E-03 0.2062E-03 -0.4366E-03
1 -0.5000E-01 -0.3470E+04 -0.2409E+03 0.2183E+03 -0.3552E+00 -0.2968E+02
1 -0.1667E-01 -0.1157E+04 -0.8031E+02 0.7277E+02 -0.3552E+00 -0.2968E+02
2 -0.1667E-01 -0.6280E+02 -0.1734E+04 0.7277E+02 -0.8881E+00 -0.1187E+02
2 0.1667E-O1 0.6280E+02 0.1734E+04 -0.7277E+02 -0.8881E+00 -0.1187E+02
3 0.1667E-O1 0.1157E+04 0.8031E+02 -O.7277E+02 -0.3552E+00 -O.2968E+02
3 0.5000E-01 0.3470E+04 0.2409E+03 -0.2183E+03 -0.3552E+00 -0.2968E+02

( 0.3028E+01, 0.4472E+01)
MID O.OOOOE+O0 O.OOOOE+O0 O.OOOOE+O0 0.8835E-03 0.2059E-02 -0.1239E-01
BOT -0.4418E-04 -0.1029E-03 0.6196E-03
TOP 0.4418E-04 0.1029E-03 -0.6196E-03
1 -0.50OOE-01 -0.1133E+04 -0.1143E+03 0.3098E+03 -0.5192E+01 -0.1112E+02
I -0.1667E-01 -0.3777E+03 -0.3809E+02 0.1033E+03 -0.5192E+01 -0.1112E+02
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2 -0.1667E-01 -0.2336E+02 -0.8637E+03 0.1033E+03 -0.1298E+02 -0.4450E+01
2 0.1667E-01 0.2336E+02 0.8637E+03 -0.1033E+03 -0.1298E+02 -0.4450E+01
3 0.1667E-01 0.3777E+03 0.3809E+02 -0.1033E+03 -0.5192E+01 -0.1112E+02
3 0.5000E-01 0.1133E+04 0.1143E+03 -0.3098E+03 -0.5192E+01 -0.1112E+02

( 0.4472E+01. 0.3028E+01)
MID O.OOOOE+O0 O.OOOOE+O0 O.OOOOE+O0 0o.9018E-03 0.1233E-02 -0.1057E-01
BOT -0.4509E-04 -0.6165E-04 0.5287E-03
TOP 0.4509E-04 0.6165E-04 -0.5287E-03
1 -0.5000E-01 -0O.1146E+04 -0.7310E+02 0.2643E+03 0.7850E-01 -0.4947E+02
1 -0.1667E-01 -0.3819E+03 -0.2437E+02 0.8811E+02 0.7850E-01 -0.4947E+02
2 -0.1667E-01 -0.2022E+02 -0.5188E+03 0.8811E+02 0.1963E+00 -0.1979E+02
2 0.1667E-O1 0.2022E+02 0.5188E+03 -0.8811E+02 0.1963E+00 -0.1979E+02
3 0.1667E-O1 0.3819E+03 0.2437E+02 -0.8811E+02 0.7850E-O1 -0.4947E+02
3 0.50OOE-01 0.1146E+04 0.7310E+02 -0.2643E+03 0.7850E-O1 -0.4947E+02

0.4472E+01. 0.4472E+01)
MID O.OOOOE+O0 O.OOOOE+O0 O.OOOOE+O0 0.3065E-03 0.6503E-03 -0.1545E-01
BOT -0.1533E-04 -0.3251E-04 0.7723E-03
TOP 0.1533E-04 0.3251E-04 -0.7723E-03
1 -0.5000E-O1 -0.3923E+03 -0.3644E+02 0.3861E+03 -0.2025E+01 -0.2162E+02
1 -0.1667E-01 -0O.1308E+03 -O.1215E+02 0.1287E+03 -0.2025E+01 -0.2162E+02
2 -0.1667E-01 -0.7838E+01 -0.2729E+03 0.1287E+03 -0o.5063E+01 -0.8647E+01
2 0.1667E-O1 0.7838E+01 0.2729E+03 -0.1287E+03 -0.5063E+01 -0.8647E+01
3 0O.1667E-01 0.1308E+03 0.1215E+02 -0.1287E+03 -0o.2025E+01 -0.2162E+02
3 0.5000E-01 0.3923E+03 0.3644E+02 -0.3861E+03 -0.2025E+01 -0.2162E+02



APPENDIX C

COMPLATE - COMPUTER PROGRAM SOURCE CODE

C COMPUTER PROGRAM C OM PLAT E
C (STATIC AND TRANSIENT ANALYSIS OF COMPOSITE PLATES)
C
C Revision of program PLATE by J.N. Reddy for orthotropic plates
C Source: Reddy. J.N. *Introduction to the Finite Element Method',
C McGraw-Hill. New York (1984).
C
C Revision by: Brett A. Pauer. The Ohio State University
C
C ...... .. ... ............ ......... .......... ....... o... o. o. o......

C
C D DESCRIPTION OF THE VARIABLES
C
C A(I.J) ...... EXTENSIONAL STIFFNESS MATRIX (I.J-1.2.3)
C A(K.L) ...... SHEAR TERMS OF STIFFNESS MATRIX (K.L-4.5)
C AO.AI.A2.A3.A4... PARAMETERS IN THE TIME-APPROXIMATION SCHEME
C AK .......... SHEAR CORRECTION COEFFICIENT
C ALFA ........ PARAMETER IN THE NEWMARK SCHEME
C ANU12(1) .... POISSON'S RATIO OF MATERIAL
C B(IJ) ...... COUPLING STIFFNESS MATRIX (I.J-1,2,3)
C BETA ........ PARAMETER IN THE NEWMARK SCHEME
C D(I.J) ...... BENDING STIFFNESS MATRIX (IJ-1.2.3)
C DX(I),DY(I).DISTANCE BETWEEN NODES IN X,Y DIRECTIONS FOR MESH
C GENERATION
C DT .......... TIME INCREMENT IN THE TRANSIENT ANALYSIS
C EI(1).E2(I).ELASTIC MODULI OF MATERIAL I
C ELP() ...... ELEMENT FORCE VECTOR
C ELXY(I.J).. .ELEMENT NODE COORDINATES OF ELEMENT NODE I
C J-1 FOR X-COORD. J-2 FOR Y-COORD
C GI2(I).G23(I).GI3(I)..SHEAR MODULI OF MATERIAL I
C GF(I) ....... GLOBAL FORCE VECTOR; SOLUTION VECTOR FROM 'SOLVE'
C GFO() ...... SOLUTION VECTOR AT CURRENT TIME
C GFI() ...... FIRST TIME DERIVATIVE OF THE SOLUTION (VELOCITY)
C GF2(1) ...... SECOND TIME DERIVATIVE OF THE SOLUTION (ACCELERATION).
C GSTIF(N.M)..GLOBAL STIFFNESS MATRIX (IN BANDED FORM)
C H ........... THICKNESS OF THE PLATE
C IBDY(I) ..... LOCATION AND DIRECTION OF SPECIFIED GLOBAL
C DISPLACEMENTS
C IBSF(I) ..... LOCATION AND DIRECTION OF SPECIFIED NONZERO GLOBAL
C FORCES
C IEL ......... INDICATOR FOR THE ELEMENT TYPE:
C IEL-1, 4-NODE ELEMENT
C IEL-2. 8- OR 9-NODE ELEMENT

100
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C IMESH ....... INDICATOR FOR MESH GENERATION
C (0-READ IN. I-SQUARE MESH IS GENERATED)
C ITEM ........ INDICATOR FOR TRANSIENT ANALYSIS (1-YES, O-NO)
C MTL(L) ...... MATERIAL NUMBER OF LAYER L
C NBDY ........ TOTAL NUMBER OF SPECIFIED DEGREES OF FREEDOM
C NBSF ........ TOTAL NUMBER OF SPECIFIED NONZERO FORCES
C NCMAX ....... VALUE OF THE COLUMN-DIMENSION OF GSTIF
C NDF ......... NUMBER OF DEGREES OF FREEDOM PER NODE (U.V.W.SXSY)
C NEM ......... NUMBER OF ELEMENTS
C NEO ......... TOTAL NUMBER OF DEGREES OF FREEDOM (NODESxNODAL DOF)
C NHBW ........ HALF-BAND WIDTH OF GLOBAL STIFFNESS MATRIX
C NLAY ........ NUMBER OF LAYERS IN THE LAMINATE
C NMTL ........ NUMBER OF DIFFERENT MATERIALS IN THE LAMINATE
C NN .......... NUMBER OF DEGREES OF FREEDOM PER NODE
C (NODES PER ELEMENT x NODAL DOF)
C NNM ......... NUMBER OF GLOBAL NODES
C NOD(I.J) .... ELEMENT CONNECTIVITY MATRIX
C NOZERO ...... INDICATOR FOR ZERO(NOZERO-O) OR NONZERO(NOZERO-I)
C INITIAL CONDITIONS FOR TRANSIENT ANALYSIS
C NPE ......... NUMBER OF NODES PER ELEMENT (4. 8 OR 9)
C NPRNT ....... INDICATOR FOR PRINTING ELEMENT MATRICES AND FORCE
C VECTORS (I-PRINT. 0-D0 NOT PRINT)
C NRMAX ....... VALUE OF THE ROW-DIMENSION OF GSTIF
C NSTP ........ TIME STEP AT WHICH THE LOAD IS REMOVED FROM THE
C PLATE (IN THE TRANSIENT ANALYSIS)
C NT .......... CURRENT TIME STEP NUMBER IN THE TRANSIENT ANALYSIS
C NTIME ....... NUMBER OF TIME STEPS IN THE TRANSIENT ANALYSIS
C NX .......... NUMBER OF DIVISIONS ALONG X-AXIS FOR MESH GENERATION
C NY .......... NUMBER OF DIVISIONS ALONG Y-AXIS FOR MESH GENERATION
C PO .......... INTENSITY OF APPLIED TRANSVERSE UNIFORM PRESSURE
C OBAR(I.J.L).TRANSFORMED STRESS-STRAIN MATRIX OF LAYER L
C RHO(I) ...... DENSITY OF MATERIAL I
C STIF(N.M)...ELEMENT STIFFNESS MATRIX
C T ........... TIME VARIABLE IN THE TRANSIENT ANALYSIS
C TH(L) ....... THICKNESS OF LAYER L
C THETA(L .... FIBER DIRECTION ORIENTATION OF LAYER L
C TITLE ....... TITLE FROM INPUT DATA FILE
C VBDY(I) ..... VALUES OF THE DISPLACEMENTS CORRESPONDING TO IBDY(I)
C VBSF(I) ..... VALUES OF SPECIFIED FORCES CORRESPONDING TO IBSF(I)
C WO.Wl.W2 .... ARRAYS CORRESPONDING TO GFO.GFI.GF2 IN AN ELEMENT
C X(1),Y(I)... X AND Y COORDINATES OF GLOBAL NODE I
C
C ........................................ . ...... ..
C

IMPLICIT REAL*8(A-H.O-Z)
CHARACTER DATFILE*20.OUTPTF*20
DIMENSION GSTIF(1000,200).GF(500).GFO(500).GFI(500).GF2(500).

* VBDY(400).IBDY(400).VBSF(400).IBSF(400).TITLE(20).
* E1(20).E2(20).G12(20).G23(20),GI3(20).ANU12(20).
* RHO(20).MTL(20),THETA(20),TH(20),OBAR(5,5.20)

COMMON/STF/ELXY(9.2),STIF(80.80).ELP(80),WO(80).WI(80).W2(80),
* A(5.5).B(3,3),D(3.3),AO.A1.A2.A3,A4.RHO1,RHO2.RHO3

COMMON/MSH/NOD(200,9).X(225),Y(225).DX(15).DY(15)
DATA NDFNRMAX.NCMAX/5.1000.200/

C
PI-3.14159265358

C
WRITE(*,'(A27)') ' INPUT THE *.DAT FILE NAME
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READ(*.'(A2O)') DATFILE
WRITE(*.'(A27)') ' TYPE THE OUTPUT FILE NAME
READ(*.*(A20)') OUTPTF

C
IPRFIL-1
IWRITE-2

C
OPEN (UNIT-IPRFIL.STATUS-'OLD .FORM-'FORMATTED'.FILE-DATFILE)
OPEN (UNIT-IWRITE.STATUS-'NEW',FORM-'FORMATTED'.FILE-OUTPTF)

C
C

C .... ... ....o.° .° .o . ° °... . . . . . . . . .....°. * ° ° . .o.° . ... ..... ......°.,

C P PREPROCESSOR UNIT
C ... .. .. .. ....°°° ° .° °. °..... ... .... °. °.... ....... ....... °.......
C
C Read title and control parameters for the program
C

READ(C.260) TITLE
READ(I.*) IELNPE.IMESH.NPRNTITEM.NTIME.NSTP.NOZERO

C
C General Mesh - defined by element connectivity and nodal points
C

IF (IMESH.EQ.O) THEN
READ(I.*) NEM.NNM
0D 10 I-I.NEM

10 READ(I.*) (NOD(IEJ).J-MNPE)
READ(1.*) (X(1).Y(I).I-1.NNM)

END IF
C
C Rectangular Generated Mesh - generated by defining number of element
C subdivisions and length of subdivisions in X and Y directions
C

20 IF (IMESH.EO.I) THEN
READ(I,*) NXNY
NXI-IEL*NX
NYX-IEL*NY
READ(I.*) (DX(1).I-I.NXI)
READ(I.*) (DY(1).I-1.NYI)
CALL MESH(DELNX.NY.NPE.NNM,NEM)

END IF
C
C Read the properties of materials used in the plate
C

30 READ(I.*) NMTL
30 32 I-I,NMTL

32 READ(I.*) E3(l).E2(I).GI2(1).G13(1),G23(1).ANU1-(1),RHO(1)

C
C Read the laminate stacking sequence or lay-up
C

READ(1.*) NLAY
DO 34 I-1.NLAY

34 READ(1.*) MTL(I),THETA(I).TH(I)
C
C Read pressure, specified forces, and specified displacements
C

READ(I.*) PO
READ(I.*) NBDY
READ(I,*) (IBDY(l),I-INBDY)
READ(I,*) (VBDY(1).I-INBDY)
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READ(1.*) NBSF
IF (NBSF.NE.O) THEN

READ(1.*) (IBSF(I).I-1.NBSF)
READ(1,*) (VBSF(I).I-1.NBSF)

END IF
C
C Transient analysis information is read
C

35 IF (ITEM.EO.1) THEN
READ(I.*) DT.ALFA

C
C Non-zero initial displacements and velocities
C

IF (NOZERO.EQ.I) THEN
NEO-NNM*NDF
READ(1.*) (GFO(1).I-I.NEO)
READ(I.*) (GF1(I).I-1.NEO)

END IF
C
C Time Integration parameters (Newmark scheme)
C

36 BETA-O.25*(O.5+ALFA)**2
DT2-DT*DT
AO-I.O/BETA/DT2
A2-1.O/BETA/DT
A1-ALFA*A2
A3-O.5/BETA-1.0
A4-ALFA/BETA-1.0

C
C Initialize disp.. vel. and accel. vectors if not specified
C

IF(NOZERO.EQ.O) THEN
DO 38 I-I,NEQ

GFO(1)-O.O
GF1(I)-O.O
GF2(I)-O.O

38 CONTINUE
END IF

END IF
C
C

o ........................ o.,,,,o.........o,.°,,.°.o.........o......

C P PROCESSOR UNIT
C .. ,. . ............ ..... ....... ...... ° ., .,.. .... ..... , , . °.... ......

C
C Compute total DOF's 'NEO'. and element DOF's 'NN'
C

40 NEO-NNM*NDF
NN-NPE*NDF

C
C Compute the plate material stiffness and inertial properties
C

CALL MATPROP(EI.E2,GI2,G13.G23.ANU12,ýLAY.MTL.THETA.RHOTH.A.B,D.
* OBAR,H.RHO1,RHO2,RH03)

C
C Print the program parameters and the mesh information
C

WRITE(2,260) TITLE
WRITE(2.310) IEL.NPE
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WRITE(2.320) NEM.NNM.NDF

C
C Print the material properties and stacking sequence
C

DO 50 1-1,NMTL
50 WRITE(2.330) I .E1(I).E2(I).G12(I).G13(I).G23(I).ANU12(I ).RHOtI)

WRITE(2.326)
WRITE(2,327)
DO 55 1-1,NLAY

55 WRITE(2.328) I.MTL(I).THETA(I)*180.O/PI.TH(I)
WRITE(2.329) H

C
C Print the A. B. and D matrices and inertial terms
C

WRITE(2.331)
WRITE(2.332)
WRITE(2.325) (A(I.J).J-1.3)
WRITE(2.325) (A(2.J).J-1.3)
WRITE(2,325) (A(3.J).J-1.3)
WRITE(2.334)
WRITE(2.325) (BC1.J).J-1.3)
WRITE(2.325) (B(2.J),J-1.3)
WRITE(2,325) (B(3.J).J-1,3)
WRITE(2. 336)
WRITE(2,325) (D(1.J),J-1.3)
WRITE(2.325) (D(2,J).J-1.3)
WRITE(2.325) (D(3.J).J-1.3)
WRITE(2.338)
WRITE(2.325) A(4.4),A(4.5).A(5.5)
WRITE(2,339)
WRITE(2.325) RHO1.RHO2.RHO3

C
C Print specified displacements, pressure and specified forces
C

WRITE(2.345) NBDY
WRITE(2.280) (IBDY&I).1BJY(I).I-1.NBDY)
WRITE(2,342) PO
WRITE(2,350) NBSF
WRITE(2.280) (IBSF(I),VBSF(I).I-1,NBSF)
WRITE(2,360)

C
C Print element connectivity and nodal point coordinates
C

DO 60 I-I.NEM
60 WRITE(2,270) I.(NOD(I.J).J-1.NPE)

WRITE(2.370)
WRITE(2.375) (I,X(I),Y(I).I-1,NNM)

C
C Compute the half-band width 'NHBW' f global stiffness matrix
C

NHBW-O
DO 70 N-1.NEM
DO 70 I-1.NPE

DO 70 J-1.NPE
NW-C IABS(NOD(N.I ).NOD(N.J))+1)*NDF
IF (NHBW.LT.NW) NHBW-NW

70 CONTINUE
WRITE(2,400)NHBW
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C

T-0. .0
IF (ITEt4.EO.l) WRITE(2.460) DT.ALFA.BETA.AO.Al.A2.A3.A4

C
C.......- DO-Loop on number of time steps begins here --------
C

D0 220 NT-1.NTIME
IF (ITEM.EQ.1.AND.NT.GE.NSTP) P0-0.0

C
C Initialize the global stiffness matrix and force vector
C

00 80 I-1.NEO
GF(I )-O.O
DO 80 J-1.NHBW

80 GSTIF(I.J)-0.0
C
C Convert global information to the element level
C

DO 130 N-1,NEM
L-0
DO 90 I-1,NPE

NI-NOD(N. I)
ELXY(I,1)-X(NI)
ELXY(I .2)-Y(NI)
LI-(NI -1 )*NDF
DO 90 J-1.NDF

LI-LI+1
L-L+1
WO( L)-GFO( LI)

W2( L)-GF2( LI)
90 CONTINUE

C
C Compute the element stiffness and mass matrices
C

CALL STIFF(IEL.NPE.NN.PO.ITEMNT.NOZERO)
IF (NPRNT.EO.1) THEN
WRITE(2.380)
DO 100 I-1.NN

100 WRITE (2.300) (STIF(I,J).J-1.NN)
WRITE(2.410)
WRITE(2.300) (ELP(I).I-1.NN)
WRITE(2.410)

END IF
C
C Assemble element stiffness matrices to get global stiffness matrix
C

DO 130 1-INPE
NR-(NOD(N.I )-1)*NDF
DO 130 Il-iNOF

NR-NR+1

GF(NR)-GF(NR)+ELP( L)
DO 130 J-1.NPE
NCL-(NOD(N.J).1)*NDF
DO 130 JJ-1.NDF

M-(J-1 )*NDF+JJ
NC-NC L+JJ-NR+1
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IF (NC.GT.O) GSTIF(NR.NC)-GSTIF(NR.NC)+STIF(LM)

130 CONTINUE
C
C The global system equations are now ready for implementing the
C force and displacement boundary conditions
C

IF ((NBSF.GT.O).AND.(NOZERO.EO.O.OR.ITEM.EO.O)) THEN
DO 140 I-1.NBSF

NB-IBSF(I)
GF(NB)-GF(NB)+VBSF(I)

140 CONTINUE
END IF

145 CALL BNDY(NRMAX.NCMAX.NEO.NHBW.GSTIF.GF.NBDYIBDY.VBDY)
C
C Call subroutine SOLVE to solve the global system of equations
C (the solution is returned in GF(1))
C

CALL SOLVE (NRNAX.NCMAX.NEO.NHBW.GSTIF.GF.O)
IF (ITEM.EO.O) GOTO 180

C
C Calculate the second time derivative when initial conditions
C are non-zero
C

IF ((NOZERO.EQ.O).OR.(NT.GT.1)) GOTO 160
DO 150 I-1.NEO

150 GF2(I)-GF(I)
GOTO 210

C
C Calculate new velocities and accelerations
C

160 T-T+DT
DO 170 1-1-NEQ

GFO(I)-AO*(GF(I)-GFO(1))-A2*GF1(1)-A3*GF2(I)
GF1(I)-GFI(I)+DT*(I.0-ALFA)*GF2(I)+DT*ALFA*GFO(I)
GF2(I)-GFO(I)
GFO(1)-GF(1)

170 CONTINUE
C
C Print the time step and resulting generalized displacements
C

WRITE(2.470) T
180 WRITE(2.480)

WRITE(2,490)(((I+4)/NDF).GF(1).GF(I+1).GF(I+2).GF(I+3),
* GF(I+4).I-1.NEO.NDF)

WRITE(2.410)
C
C . .... . . . .. . . . , .. ... . . ... .... ... . . ... .. .
C POST PROC E SSOR UNIT
C .. .... . . . . . . . ............ ..
C
C Compute strains and stresses (at the Gauss points)
C

WRITE(2.440)
WRITE(2.450)
DO 200 N-1,NEM

L-O
DO 190 I-1,NPE

NI-NOD(N.I)



107
ELXY(I .1)-X(NI)
ELXY( I.2)-Y(NI)
LI-(NI -1)*NOF
DO 190 J-1.NDF

LI-LI+l
L-L+1
WO( L)-GF( LI)

190 CONTINUE
CALL STRESS (NPENDF.IEL.ELXYWO.QBAR.NLAY.TH.H)

200 CONTINUE
C

IF(ITEM.EQ.O) GOTO 230
210 WRITE(2.390)
220 CONTINUE

C
C---------End of DO-Loop on the numt~r of time steps ---------------
C
230 STOP

C
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C . FO0R MAT S
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C

260 FORMAT(20A4)
270 FORMAT(6X.I5.2X.915)
280 FORMAT((8X.3(2X.I4.2X.E12.5)))
300 FORMAT(5(2X.E12.5))
310 FORMAT(/.5X.'ELEMENT TYPE(1-LINEAR,2-OUADRATIC) -'.12.5X,

*' NODES PER ELEMENT-',12)
320 FORMAT(IOX,'ACTUAL NUMBER OF ELEMENTS IN THE MESH-',13.

*/I1OX.'NUMBER OF NODES IN THE MESH -'.13.
*/1IOX 'DEGREES OF FREEDOM -* .12./)

325 FORMAT(7X,3(3X.El2.5))
326 FORMAT(/.5X.'LAMINATE STACKING SEQUENCE')
327 FORMAT(/.8X,'LAYER'.3X.'MTL #'.4X,'THETA'.5X.'THICKNESS')
328 FORMAT(8X.13.6X.12.2X.F1O.5.2X.E12.5)
329 FORMAT(/.8X.'TOTAL THICKNESS -'.E12.5)
330 FORMAT(5X,'MATERIAL '.12.' PROPERTIES:'./.1OX.'MODULUS.E1-'.E12.5,

*/IOX.'MODULUSE2.',E2.5/,1OX.'SHEAR MODULUSG12-'.E12.5.
*/1IOX.SHEAR MODULUS.G13-'.E12.5./.1OX.'SHEAR MODULUS.G23-'.E12.5.
*/1IOX'POISSONS RATIO.NU12-'.E12.5.
*/IOX.'MATERIAL DENSITY.RHO-'.El2.5,/)

331 FORMAT(/.5X,'LAMINATE PLATE PROPERTIES')
332 FORMAT(/.8X.'A MATRIX TERMS')
334 FORMAT(/,BX.'B MATRIX TERMS')
336 FORMAT(/.BX.'D MATRIX TERMS')
338 FORMAT(/.BX,'SHEAR TERMS: A44. A45, A55')
339 FORMAT(/.8X.' INERTIAL TERMS RHOl. RHO2. RH03')
342 FORMAT(/.5X.'UNIFORMLY DISTRIBUTED LOAD, PO -*,E12.5)
345 FORMAT(/.5X.'NUMBER OF SPECIFIED DISPLACEMENTS-'.15.

*/,5X.'SPECIFED DISPLACEMENTS AND THEIR VALUES FOLLOW:')
350 FORMAT(/.5X.'NUMBER OF SPECIFIED FORCES-'.14,/.5X,

*'SPECIFIED FORCE DEGREES OF FREEDOM AND THEIR VALUES FOLLOW:')
360 FORMAT(/.5X.'BOOLEAN (CONNECTIVITY) MATRIX-NOD(I.J)' ./)
370 FORMAT(/,5X.'COORDINATES OF THE GLOBAL NODES:'./)
375 FORMAT(2(2X.14.3X.E12.5.3X.E12.5))
380 FORMAT(/,SX,'ELEMENT STIFFNESS AND FORCE MATRICES:',./)
390 FORMAT(120(':'),//)
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400 FORMAT(/,SX,'HALF BAND WIDTH OF GLOBAL STIFFNESS MATRIX - '15.1/)
410 FORMAT(//)
440 FORMAT(5X.*LAMINATE STRAINS AND STRESSES AT GAUSS POINTS',/)
450 FORMAT(IX.'(X-COORD.Y-COORD)'.

*/.2X,'LOC'.5X,'EPSILONX',4X.'EPSILONY'.5X.'GAMMAXY'.5X.
*'KAPPAX'.6X,'KAPPAY',6X,'KAPPAXY',/,2X,'LAY'.4X,'Z-COORD',6X,
*'SIGMAX',6X,'SIGMAY'.7X,'TAUXY'.7X,'TAUYZ',7X,'TAUXZ')

460 FORMAT(/.5X,'DT-'.EIO.4.5X.'ALFA-'.EIO.4.5X.'BETA-'.EIO.4./.1OX.
*'TEMPORAL PARAMETERS AO.A1,A2,A3.A4:',5EI2.4./)

470 FORMAT(/.SX.'TIME-'.EIO.3./)
480 FORMAT(/,5X.'GENERALIZED DISPLACEMENTS (U.V.W.SX.SY) PER NODE*,/)
490 FORMAT(2X.I4.2X.E12.5.ZX.E12.5.2X.E12.5.2X.E12.5,ZX.E12.5)

END
C
C
C SUBROUTINES *
C
C

SUBROUTINE MATPROP(E1.E2,Gl2,G13.G23.ANU12.NLAY,MTL.THETARHO.
* T.A.B.D.OBAR.H.RHOI.RHO2.RH03)

C
C ... ....... . .......... .. . ,. ,,. . ...o. .. .
C THIS SUBROUTINE CALCULATES THE 0 AND OBAR MATRICES FOR EACH LAYER
C AND THE LAMINATE MATERIAL PROPERTY MATRICES A(I.J).B(I.J).D(I.J)
C AND THE INERTIAL TERMS RHOI,RHO2,RHO3
C
C A(I.J) ...... EXTENSIONAL STIFFNESS MATRIX (I.J-1.2.3)
C A(K.L) ...... SHEAR TERMS OF STIFFNESS MATRIX (K.L-4.5)
C AK .......... SHEAR CORRECTION COEFFICIENT
C AMM.ANN ..... SINE AND COSINE OF FIBER ORIENTATION 'THETA'
C ANU12(I).ANU1(I). ... POISSON RATIOS OF MATERIAL
C ATOL ........ ZERO TOLERANCE OF STIFFNESS TERMS COMPARED OTHERS
C B(I.J) ...... COUPLING STIFFNESS MATRIX (I.J-1.2.3)
C D(IJ) ...... BENDING STIFFNESS MATRIX (I.J-1.2.3)
C EI).E2(I).ELASTIC MODULI OF MATERIAL I
C G12(I).G23(I).G13(I)..SHEAR MODULI OF MATERIAL I
C H ........... TOTAL PLATE THICKNESS
C MTL(L) ...... MATERIAL NUMBER OF LAYER L
C NLAY ........ NUMBER OF LAYERS IN THE LAMINATE
C O(I.J.L) .... STRESS-STRAIN MARTIX OF LAYER L ALIGNED WITH
C PRINCIPAL DIRECTIONS
C OBAR(I.J.L).TRANSFORMED STRESS-STRAIN MATRIX OF LAYER L
C RHO() ...... DENSITY OF MATERIAL I
C RHO1.RHO2.RHO3... INERTIAL PARAMETERS OF THE LAMINATE
C TH(L) ....... THICKNESS OF LAYER L
C THETA(L) .... FIBER DIRECTION ORIENTATION OF LAYER L
C ZBAR(L) ..... MID-PLANE POSITION OF LAYER L
C .... . ....... . . . . .... . . . ....... .... ...... .......
C

IMPLICIT REAL*8(A-H.O'Z)
DIMENSION Q(5.5.2O).OBAR(5.5.20),El(20),E2(20).G12(20),G13(20).

* G23(20),ANU12(20),ANU21(20).THETA(20),T(20),
* MTL(20).ZBAR(20).RHO(20).A(5.5).B(3.3).D(3.3)

C
C Shear correction factor 'AK'
C

AK-5.0/6.0
H-O .0
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ATOL-1 .OE-09
PI-3.141592654

C
C This loop calculates '0 & OBAR' matrices and plate thickness W'
C

00 30 I-1.NLAY
H-H+T(I)

DENOM-1 .O-ANU12(?4TL(I) )*ANU21(MTL( I))
0(1.1.1 )-E1(P4TL(1 ))/DENOM
0(2.2.1 )-E2(MTL(I) )/DENOM
0(l.2.1)-ANU12(MTL(I))*E2(MTL(I))/0ENOM
0(3.3.I)-G12(!4TL(I))
Q(4.4.I)-G23(P4TL(l))
Q(5.5.I)-G13(MTL(l))

C
C Change 'THETA' to radians and calculate cos 'AtMM& sin 'ANN'
C

THETA( I)-THETA( I)*P 11180.0
AMM1-COS(THETA( ))
ANN-SIN(THETA( I))

C
C Calculate lamina stiffness matrices 'OBAR' due to orientation 'THETA'
C

0BAR(1.1.1)-0(1.1.I)*(AtMl**4.0) + 2.O*(0(1.2.I)+2.0*Q(3.3.I))*
* ~(AMI4*AMM)*(ANN*ANN) + 0(2.2.I)*(ANN**4.0)

OBAR(1.2.I)-(0(1.1.1)+0(2 .2 .I) -4 . *(0(3 *3*1)) )*( AMM1*AtMI4
* (ANN*ANN)+ 0(I.2.1)*(AMM**4.O+ANN**4.O)

QBAR(1 .3.1 )-.(0(2.2.1)*ANN*(ANN**3.0)) + 0(1.1.! (A4**.)*N
* - (0(1.2,I)+2.O*0(3.3.I))*AMt4*ANN*((AMM*AMM)-(ANN*ANN))

OBAR(2.1 .1 )-OBAR(1 .2.1)
OBAR(2.2.1)-0(1.1.I)*(ANN**4.O) + 2.0*0(1.2.1 )+2.0*0(3.3.1))*

* ~(AMt4*AMM)*(ANN*ANN) + Q(2.2.I)*(AMM**4.O)
0BAR(2.3.I )--(0(2.2.I)*(AMM**3.O)*ANN) + 0(1 .1.I)*At4M*(ANN**3.0)
* ~~+ (0(1.2.1 )+2.O*0(3.3.I) )*AJ4M*ANN*( (AMP4*AMM)-(ANN*ANN))
0BAR(3.1 .1)-OBAR(1.3.I)
OBAR(3.2.I )-OBAR(2.3.I)
ODAR(3 .3 . )-(0( 1.1. I)+0(2 .2.I) -2 .0*0(1.2.1) )*(AMM*AMM1)*(ANN*ANN)

* + 0(3.3.I)*((AMM*AMM)-(ANN*ANN))**2.0
0BAR(4.4.I)-0(4.4.I)*(AMM*AMM) + 0(5.5.I)*(ANN*ANN)
QBAR(4,5.I )-(0(5,5.I )-0(4.4.I) )*AMM*ANN
QBAR(5.4.1)-OBAR(4.5,I)
0BAR(5.5.I)-0(5,5.I)*(AMt4*AMMt) + 0(4.4.I)*(ANN*ANN)

30 CONTINUE
C
C Initialize A.BD matrices and inertial terms
C

DO 40 1-1.3
DO 40 J-1.3
A(I.J)-O.O
B(I .J)-O.O
0(1 .J)-O.O

40 CONTINUE
A(4.4)-O.O
A(4.5)-O.O
A(5.4)-O.O
A( 5 *5)-O .0
RHOI-0.0
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RH02-0.O
RH03-0.O0

C
C Calculate lamina mid-plane position 'ZBAR' from laminate mid-plane (0)
C

ZBAR(l)--H/2.O+T(1)/2.O
IF(NLAY.GT.1) THEN
DO 50 I-2.NLAY
ZBAR(I)-ZBAR(1-1)+T(1-1)/2.O+T(I)/2.O

50 CONTINUE
END IF

C
C Calculate A.B.D in-plane matrix terms
C

DO 80 K-1.NLAY
DO 60 1-1.3

DO 60 J-1.3
A(I.J)-A(I.J) + OBAR(I.J.K)*T(K)
B(I.J)-B(I.J) + OBAR(IJ.K)*T(K)*ZBAR(K)
D(I.J)-D(I.J) + OBAR(I.J.K)*(T(K)*ZBAR(K)**2.0

* + (T(K)**3.O/12.O))
60 CONTINUE

C
C Calculate 'A' matrix transverse shear terms
C

DO 70 1-4.5
DO 70 J-4.5
A(I.J)-A(1.J) + AK*OBAR(I.J.K)*T(K)

70 CONTINUE
C
C Calculate inertial terms for dynamic analysis
C

RHOI-RHOl + RHO(MTL(K))*T(K)
RH02-RHO2 + RHO(MTL(K))*T(K)*ZBAR(K)
RH03-RHO3 + RHO(MTL(K))*(T(K)*ZBAR(K)**2.O+(T(K)**3.0/12.0))

80 CONTINUE
C
C Set negligibly small laminate property terms to zero
C

TOL-A( 1.1 )*ATOL
DO 90 1-1.5
DO 90 J-1.5
IF (ABS(A(IJ)).LT.TOL) A(I.J)-O.0
IF (I.LE.3.AND.J.LE.3) THEN
IF (ABS(B(I.J))LLT.TOL) B(I.J)-O.O
IF (ABS(D(I.J)).LT.TOL) D(I,J)-O.O

END IF
90 CONTINUE

C
TOL-RHO1*ATOL
IF (ABS(RHO2).LT.TOL) RH02-0.0

C
RETURN
END

C

C
SUBROUTINE STIFF(IEL.NPE.NN.PO.ITEM.NT.NOZERO)
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C
C ... o °.... ............ °.. °. o... ...... ....... .................... .........

C THIS SUBROUTINE IS WRITTEN FOR COMPOSITE PLATES. THE ELEMENT IS
C BASED ON A SHEAR-DEFORMABLE THEORY. HERE THE FOUR-. EIGHT- OR
C NINE-NODE ISOPARAMETRIC ELEMENT WITH FIVE DEGREES OF FREEOOM
C (U.V.W.SX.SY) PER NODE CAN BE USED BY SPECIFYING THE ELEMENT TYPE
C
C SUBROUTINE VARIABLES
C
C A(I.J) ...... EXTENSIONAL STIFFNESS MATRIX (I.J-1.2.3)
C A(K.L) ...... SHEAR TERMS OF STIFFNESS MATRIX (K.L-4.5)
C AO.AI.A2.A3.A4.. .PARAMETERS IN THE TIME-APPROXIMATION SCHEME
C B(I.J) ...... COUPLING STIFFNESS MATRIX (IJ-1.2.3)
C CNST ........ INTEGRATION CONSTANT TRANSFORMED TO X.Y COORDINATES
C D(I.J) ...... BENDING STIFFNESS MATRIX (I.J-1.2,3)
C DET ......... DETERMINATE OF JACOBIAN TRANSFORMATION MATRIX
C ELP() ...... ELEMENT FORCE VECTOR
C ELXY(I.J).. .ELEMENT NODE COORDINATES OF ELEMENT NODE I
C J-1 FOR X-COORD. J-2 FOR Y-COORD
C GAUSS(I.J)..GAUSSIAN POINT COORDINATES (LOCAL VALUES)
C GDSF(J.I)... DERIVATIVE OF SHAPE FUNCTION SF(I)
C J-1 WITH RESPECT TO X, J-2 WITH RESPECT TO Y
C H(I.J) ...... ELEMENT MASS MATRIX
C IBDY(I) ..... LOCATION AND DIRECTION OF SPECIFIED GLOBAL
C DISPLACEMENTS
C IBSF(I) ..... LOCATION AND DIRECTION OF SPECIFIED NONZERO GLOBAL
C FORCES
C IEL ......... INDICATOR FOR THE ELEMENT TYPE:
C IEL-1. 4-NODE ELEMENT
C IEL-2, 8- OR 9-NODE ELEMENT
C IMESH ....... INDICATOR FOR MESH GENERATION
C (O-READ IN. I-SOUARE MESH IS GENERATED)
C ITEM ........ INDICATOR FOR TRANSIENT ANALYSIS (I-YES, O-NO)
C LGP ......... ORDER OF REDUCED INTEGRATION ON TRANSVERSE SHEAR TERM.
C NDF ......... NUMBER OF DEGREES OF FREEDOM PER NODE (U.V oi.SX.SY)
C NGP ......... ORDER OF NORMAL INTEGRATION ON IN-PLANE TERMS
C NN .......... NUMBER OF DEGREES OF FREEDOM PER NODE
C (NODES PER ELEMENT x NODAL DOF)
C NOZERO ...... INDICATOR FOR ZERO(NOZERO-O) OR NONZERO(NOZERO-1)
C INITIAL CONDITIONS FOR TRANSIENT ANALYSIS
C NPE ......... NUMBER OF NODES PER ELEMENT (4, 8 OR 9)
C NT .......... CURRENT TIME STEP NUMBER IN THE TRANSIENT ANALYSIS
C PO .......... INTENSITY OF APPLIED TRANSVERSE UNIFORM PRESSURE
C SF(I) ....... VALUE OF INTERPOLATION FUNCTION OF NODE I
C STIF(I.J)...ELEMENT STIFFNESS MATRIX
C SXX.SXY.SYY.SYX..VALUES OF SHAPE FUNCTION DERIVATIVE INTEGRALS
C SXO.SYO.SOX.SOY..VALUES OF THE PRODUCT OF SHAPE FUNCTION AND
C SHAPE FUNCTION DERIVATIVE INTEGRALS
C SOO ......... VALUE OF SHAPE FUNCTION PRODUCT INTEGRALS
C FOR Snm ABOVE X-X DERIVATIVE. Y-Y DERIVATIVE. O-SHAPE FUNCTION
C RHOIRHO2.RHO3..LAMINATE INERTIAL PROPERTIES
C WO.Wl.W2 .... ARRAYS CORRESPONDING TO GFO.GFI.GF2 IN AN ELEMENT
C WT(I.J) ..... INTEGRATION WEIGHT VALUES
C XI.ETA ...... LOCAL COORDINATE VALUES OF GAUSS POINTS
C .. . .............. . .. ,,. o. .. ... ., .., ....o .... ... .
C

IMPLICIT REAL*B(A-H,O-Z)
COMMON/STF/ELXY(9.2),STIF(80.BO).ELP(80),WO(8O),WW(80).W2(8O),
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* ~~A(5.5) .8(3.3) .0(3,3) .AO,A1 .A2.A3.A4.RHOl .RHO2.RHO3

CO1MION/SHP/SF(9) .GDSF(2.9)
DIMENSION GAUSS(4.4).WT(4.4).H(80.80)

C
C Gaussian Point Coordinates
C

DATA GAUSS/0.0D0. 0.000. 0.000. 0.000. - .577350269189626D0.
"* .57735026918962600. 0.000. 0.000. - .77459666924148300, 0.000.
"* .77459666924148300. 0.000, -.86113631169405300,
"* - .33998104358485600. .33998104358485600, .861136311594053D0/

C
C Integration Weight Values
C

DATA WT/ 2.000. 0.000. 0.000. 0.000. 1.000. 1.000. 0.000. 0.000.
"* .55555555555555600. .88888888888888900. .555555555555556D0.
"* 0.000. .34785484513745400. .652145154862546D0.
"* .652145154862546D0. .347854845137454D0/

C
C Integration order of in-plane terms 'NGP'. and
C transverse shear terms (reduced-integration) ILGP'
C

NGP-IEL+1
LGP-I EL
NDF-NN/NPE

C
C Initialize the element matrices 'STIF'. 'H' and force vector 'ELP'
C

DO 10 I-1.NN
ELP(I -0.0
00 10 J-1.NN

H(I.J)-0.0
STIF( I.J)-0.0

10 CONTINUE
C
C Gauss Quadrature (Full Integration) on in-plane terms begins here
C

00 80 NI-1,NGP
DO 80 NJ-1.NGP

C
C Convert to local Gauss point coordinates and evaluate shape function
C

XI-GAUSS(NI .NGP)
ETA-GAUSS( NJ .NGP)
CALL SHAPE(NPE,XI.ETA.ELXY.D[T)
CNST-DET*WT(NI .NGP)*WT(NJ.NGP)

C
C Distribution of constant pressure to nodal points
C

DO 30 I-1,NPE
L-( I-i)*NDF+3
ELP( L)-ELP( L)+CNST*SF(I )*PO

30 CONTINUE
C
C Compute Stiffness matrix 'STIF' and Mass matrix 'H' coefficients
C

D0 70 I-1.NPE



DO 60 J-1.NPE13
C
C Integrals of the shape functions and derivatives
C

SXX-GDSF(1 ,1 *DS lJ)*CNST
SYY-GDSF(2.I )*GDSF(2,J)*CNST
SXY-GDSF(1I.I)*GDSF(2.J)*CNST
SYX-GDSF(2.I )*GDSF(1,J )*C2N4T
SOO-SF( J)*SF(J )*CNST

C
C Full-Integration on in-plane stiffness terms
C

STIFCII.JJ).-STIF(II.JJ)+A(1.l)*SXX+A(1.3)*(SXY+SYX)+A(3.3)*SYY
STIF(II.JJ+1)-STIF(II.JJ+1)+A(I.2)*SXY+A(1.3)*SXX+A(2.3)*SYY

* +A(3,3)*SYX
STIF(II+1.JJ)-STIF(11+1.JJ)+A(l.2)*SYX#-A(l.3)*SXX+A(2,3)*SYY

* +A(3.3)*SXY
STIF(1IJJ+3)-STIF(II.JJ+3)+B(1.1)*SXX+B(l.3)*(SXY+SYX)

* +B(3.3)*SYY
STIF(11+3.JJ)-STIF(11+3.JJ)+B(1.l)*SXX+B(1.3)*(SYX+SXY)

* +B(3.3)*SyY
STIF(II.JJ+4)-STIF(11.JJ+4)+B(1,2)*SXY+B(1.3)*SXX+B(2.3)*SYY

* +B(3.3)*SYX
STIF(II+4.JJ)-STIF(II+4.JJ)+B(1.2)*SYX+B(l.3)*SXX+B(2.3)*SYY

* +B(3.3)*SXY
STIF(11+1.JJ+1)-STIF(II+l.JJ+1)+A(2.2)*SYY+A(2.3)*(SXY+SYX.)

* +A(3.3)*SXX
STIF(II+l.JJ+3)-STIF(Il+1 .JJ+3)+B(1.2)*SYX+B(2.3)*SYY

* +8(1 3)*SXX+8(3,3)*SXY
STIF(II+3.JJ+1)-STIF(11+3.JJ+1)+B(1.2)*SXY+8(2.3)*SYY

* ~+8(1 .3)*SXX+B(3.3)*SYX
STIF(1I+1.JJ+4)-STIF(11+1.JJ+4)+B(2.2)*SYY+B(2,3)*(SXY+SYX)

* .I+8(3,3)*SXX
STIF(II+4.JJ+1)-STIF(II+4,JJ+1)+B(2.2)*SYY+B(2,3)*(SYX+SXY)

* +B(3.3)*SXX
STIF(II+3.JJ+3)-STIF(II+3.JJ+3)+D(1.1)*SXX+0(1.3)*(SXY+SYX)

* +D(3,3)*SYY
STIF(11+3.JJ+4)-STIF(II+3.JJ+4)+D(l.2)*SXY+D(l,3)*SXX

* +D(2.3)*SYY+D(3.3)*SYX
STIF(II+4.JJ+3)-STIF(II+4.JJ+3)+D(l.2)*SYX+0(1,3)*SXX

* ~+D(2,3)*SYY+D(3 .3)*SXY
STIF(II+4.JJ+4)-STIF(II+4,JJ+4)+D(2.3)*(SXY+SYX)+D(3,3)*SXX

* +D(2.2)*SYY
C
C Mass matrix terms 'H' for transient analysis
C

IF (ITEM.EO.1) THEN
H( II ,JJ )-H( II .JJ )+RHO1*SOO
H(II .JJ+3)-H(II .JJ+3)+RHO2*SOO
H( 1+3 .JJ )-H( 11+3*JJ )+RHOZ*SOO
H( 11+1.JJ+1 )-H( 11+1 ,JJ+l )+RHO1*SOO
H( 1+1 ,JJ+4 )-H( 11+1 JJ+4 )+RHO2*SOO
H( 11+4 .jj+l )-H( 11+4 ,JJ+1 )+RHO2*SOO
H( 11+2 .JJ+2 )-H( 11+2 .JJ+2 )+RHO1*SOO
H( II+3.JJ+3)-H(I I+3,JJ+3)+RH03*SOO
H( 11+4 .JJ+4 )-H( 11+4 .jj+4 )+RHO3*SOO

END IF
C
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JJ-NDF*J+1

60 CONTINUE
I I-NDF*I+l

70 CONTINUE
80 CONTINUE

C
C Gauss Guadrature (Reduced Integration) on transverse shear terms
C

DO 110 NI-1.LGP
DO 110 NJ-1,LGP
XI-GAUSS(NI .LGP)
ETA-GAUSS( NJ *LGP)
CALL SHAPE(NPEXI.ETA.ELXY.DET)
CNST-DET*WT( NI .LGP )*WT( NJ *LGP)

C
DO 100 I-1.NPE

JJ-1
DO 90 J-1.NPE

C
C Integrals of the shape functions and derivatives
C

SXX-GDSF( 1.1)*GDSF( 1 J )*CNST
SYY-GDSF(2. I)*GDSF(2 J )*CNST
SXY-GDSF( 1.*I)*GDSF(2,J )*CNST
SYX-GDSF(2.I )*GDSF(1.J)*CNST
SXO-GDSF(1,I )*SF(J)*CNST
SOX-SF( I)*GDSF(1 J )*CNST
SYO-GDSF(2.1 )*SF(J)*CNST
SOY-SF( I)*GDSF(2 ,J )*CNST
SOO-SF( I)*SF(J)*CNST

C
C Reduced-Integration on in-plane stiffness terms
C

STIF(II+2.JJ+2)-STIF(II+2.JJ+2)+A(5.5)*SXX+A(4.5)*(SXY+SYX)
* +A(4.4)*SYY

STIF(II+2,JJ+3)-STIF(II+2.JJ+3)+A(5.5)*SXO+A(4.5)*SYO
STIF(II+3.JJ+2)-STIF(Il+3.JJ+2)+A(5.5)*SOX+A(4,5)*SOY
STIF(1I+2.JJ+4)-STIF(II+2,JJ+4)+A(4.5)*SXO+A(4.4)*SVO
STIF(11+4.JJ+2)-STIF(11+4.JJ+2)+A(4.5)*SOX+A(4.4)*SOY
STIF(11+3.JJ+3)-STIF(11+3,JJ+3)+A(5.5)*SOO
STIF(11+3,JJ+4)-STIF(1I+3.JJ+4)+A(4,5)*SOO
STIF(II+4.JJ+3)-STIF(II+4,JJ+3)+A(4.5)*SOO
STIF( IIi-4,JJ+4 )-STIF( 11+4 .JJ+4 )+A(4 .4 )*SOO

C
JJ-NDF*J+1

90 CONTINUE
I I-NDF*I+1

100 CONTINUE
110 CONTINUE

C
C Element calculations for transient analysis brgin here
C

IF (ITEM.EO.O) RETURN
IF (NOZERO.EO.1.AND.NT.EQ.1) THEN
DO 120 I-1.NN

ELP(I -O.O
DO 120 J-1.NN
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ELP(I)-ELP(I)-STIF(I.J)*WO(J)
STIF(I.J)-H(I.J)

120 CONTINUE
RETURN

END IF
C

130 DO 140 I-l.NN
DO 140 J-I.NN

ELP(1)-ELP(I)+H(I.J)*(AO*WO(J)+A2*WI(J)+A3*W2(J))
STIF(I.J)-STIF(I.J)+AO*H(I.J)

140 CONTINUE
RETURN
END

C

C
SUBROUTINE STRESS (NPE.NDF.IEL.ELXY.W.OBAR.NLAY.TH.H)

C
C . ..... ... . ,....... .. .. .. ... ... .... . . .. ... ... ... ..... .
C THIS ROUTINE EVALUATES THE STRESSES AND STRAINS AT THE GAUSS
C POINTS USING THE REDUCED INTEGRATION.
C
C AKAPX.AKAPY.AKAPXY..CURVATURES AT CURRENT GAUSS POINT
C ELXY(I.J)...ELEMENT NODE COORDINATES OF ELEMENT NODE I
C J-1 FOR X-COORD. J-2 FOR Y-COORD
C EPN(I) ...... VECTOR OF CURRENT Z-POSITION STRAINS
C I-EPNxx.2-EPNyy.3-GAMxy.4-GAMyz,5-GAMxz
C EPNXOEPNYO,GAMXYO..MID-PLANE STRAINS AT CURRENT GAUSS POINT
C EPNXI.EPNY1,GAMXYI..LAMINATE BOTTOM STAINS AT CURRENT GAUSS POINT.
C EPNX2.EPNY2.GAMYY2..LAMINATE TOP STAINS AT CURRENT GAUSS POINT
C GAMYZ.GAMXZ..TRANSVERSE SHEAR STRAINS AT CURRENT GAUSS POINT
C GAUSS(IJ)..GAUSSIAN POINT COORDINATES (LOCAL VALUES)
C GDSF(J.I)...DERIVATIVE OF SHAPE FUNCTION SF(I)
C J-1 WITH RESPECT TO X, J-2 WITH RESPECT TO Y
C H ........... TOTAL PLATE THICKNESS
C IEL ......... INDICATOR FOR THE ELEMENT TYPE:
C IEL-I, 4-NODE ELEMENT
C IEL-2, 8- OR 9-NODE ELEMENT
C L ........... POINTER TO FIRST DGF OF NODE WITH 'NDF' DOF PER NODE
C NDF ......... NUMBER OF DEGREES OF FREEDOM PER NODE (U.V.W.SX.SY)
C NGP ......... ORDER OF REDUCED INTEGRATION FOR STRAINS
C NLAf ........ NUMBER OF PLATE LAYERS
C NPE ......... NUMBER OF NODES PER ELEMENT (4. 8 OR 9)
C OBAR(I.J.L).TRANSFORMED STRESS-STRAIN MATRIX OF LAYER L
C SIGMA(I) .... VECTOR OF CURRENT Z-POSITION STRESSES
C 1-Sxx.2-Syy.3-Txy.4-Tyz.5-Txz
C SF(I) ....... VALUE OF INTERPOLATION FUNCTION OF NODE I
C TH(L) ....... THICKNESS OF LAYER L
C W(I) ........ VALUES OF ELEMENT GENERALIZED DISPLACEMENTS
C XI.ETA ...... LOCAL COORDINATE VALUES OF GAUSS POINTS
C X,Y ......... GLOBAL COORDINATES OF CURRENT GAUSS POINT
C Z(L) ........ Z-COORDINATE OF LAYER INTERFACES (LAYER L/2)
C L-ODD-BOTTOM OF LAYER. L-EVEN-TOP OF LAYER
C ..... . . .. . ..... .. . . ... ... ..... . . ..... ... .... ...
C

IMPLICIT REAL*8 (A-H.O-Z)
COMMON/SHP/SF(9).GDSF(2,9)
DIMENSION GAUSS(4.4),ELXY(9.2).W(80).OBAR(5.5,20).TH(20).Z(40),
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* EPN(5).SIGMA(5)

C
C Gaussian point coordinates
C

DATA GAUSS/0.O00. 0.000. 0.000. 0.000. - .57735026918962600.
* .57735026918962600. 0.000. 0.000. -.77459666924148300. 0.000.
* .774596669241483D0. 0.000. - .861136311594053D0.
* -.33998104358485600. .33998104358485600. .86113631159405300/

C
C Order of integration (reduced) 'NGP'
C

NGP-I EL
00 60 NI-1.NGP
D0 60 NJ-1.NGP
XI-GAUSS(NI ,NGP)
ETA-GAUSS( NJ, NGP)
CALL SHAPE (NPE.XIFTA.ELXY.DET)
EPNXO-O.O
EPNYO-0 .0
GAMXYO-0 .0
GAMY Z-0 .0
GAJ4XZ-0.O
AKAPX-0.O
AKAPY-0.O
AKAPXY-0 .0
X-0 .0
Y-0.0
D0 20 I-1.NPE

L-( I-i)*NDF~g.
X-X+SF(I)*ELXY(I.1)
Y-Y+SF(I )*ELXY(I .2)

C
C Compute the midplane strains and curvatures and average
C tranverse shear strain
C

10 EPNX0-EPNXO+GDSF(1.1)*W(L)
EPNYO-EPNYO+GOSF(2.1I)*W( L+1)
GAt4XYO-GAMXY0+GDSF(2.1)*W(L)+GDSF(1,I)*W(L+1)
GAMYZ-GAMYZ+SF( I)*j( L+4)+GDSF(2 I )*W(L+2)
GAMXZ-GAI4XZ+SF I ')*W( L+3 )+GDSF( 1.1 )*W( L+2)
AKAPX-AKAPX+GOSF(1.II)*W( L+3)
AKAPY-AKAPY+GOSF(2,1I)*W(L+4)
AKAPXY-AKAPXY+GDSF( 2,! )*W( L+3 )+GOSF( 1.!)*W( L+4)

20 CONTINUE
C
C Compute strains at the bottom (1) and top (2) of the laminate
C

EPNXI-EPNXO- (1/2 .0)*AKAPX
EPNY1-EPNYO- (H/2.0)*AKAPY
GAJ4XY1-GAMXYO- (1/2 .0)*AKAPXY
EPNX2-EPNXO+(H1/2.0 )*AKAIPX
EPNY2-EPNYO+(H/2 .0)*AKAPY
GAMXY2-GAMXYO+(H/2 . )*AKAPXY

C
C Print midplane strains and curvatures, and surface strains
C

WRITE(2,100) X,Y
WRITE(2.110) EPNXO.EPNYO.GAMXYO.AKAPX,AKAPY.AKAPXY
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WRITE(2,120) EPNX1,EPNY1,GAMXYI
WRITE(2.130) EPNX2,EPNY2.GAMXY2

C
C Compute z-coordinate at the lamina interfaces
C

Z(O)--H/2.0
DO 50 LL-1.NLAY

Z(2*LL-1)-Z(2*LL-2)
Z(2*LL)-Z(2*LL-I)+TH(LL)

C
C Compute layer strains at layer interfaces
C

DO 40 KK-1.2
EPN(1)-EPNXO+Z(2*(LL-1)+KK)*AKAPX
EPN(2)-EPNYO+Z(2*(LL-1)+KK)*AKAPY
EPN(3)-GAMXYO+Z(2*(LL-1)+KK)*AKAPXY
EPN(4)-GAMYZ
EPN(5)-GAMXZ

C
C This loop computes the layer stresses at layer interfaces
C

DO 30 11-1.5
SIGMA(II)-O.O
DO 30 JJ-1.5

SIGMA(II)-SIGMA(II)+OBAR(IIJJ,LL)*EPN(JJ)
30 CONTINUE

C
C Print the stresses at the lamina interfaces
C

WRITE(2.140) LL.Z(2*(LL-1)+KK).(SIGMA(MM).MM-1.5)
40 CONTINUE
50 CONTINUE
60 CONTINUE
RETURN

C
C

100 FORMAT(/,IX.'('.EI2,4,'.'.E12.4,')')
110 FORMAT(2X.'MID'.1X..'X,12.4))
120 FORMAT(2X.'BOT'.IX,(1I,3E12.4))
130 FORMAT(2X2'TOP'.IX.(1X.3E12.4))
140 FORMAT(2X.12,1X.EI2.4,1X.5EI2.4)

END
C

C
SUBROUTINE BNDY(NRMAX.NCMAX.NEONHBW.S.SL.NBDY.IBDY.VBDY)

C
C ......... .. . ........................ ................ .. .. . . .. .
C SUBROUTINE USED TO IMPOSE BOUNDARY CONDITIONS ON BANDED EOUATIONS
C
C IBDY(I) ..... LOCATION AND DIRECTION OF SPECIFIED GLOBAL
C DISPLACEMENTS
C NBDY ........ TOTAL NUMBER OF SPECIFIED GLOBAL DISPLACEMENTS
C NCMAX ....... VALUE OF THE COLUMN-DIMENSION OF S
C NEO ......... TOTAL NUMBER OF DEGREES OF FREEDOM (NODESxNODAL DOF)
C NHBW ........ HALF-BAND WIDTH OF GLOBAL STIFFNESS MATRIX
C NRMAX ....... VALUE OF THE ROW-DIMENSION OF S
C S(M,N) ...... GLOBAL STIFFNESS MATRIX (IN BANDED FORM)
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C SL(M) ....... GLOBAL FORCE VECTOR
C SVAL ........ VALUE OF CURRENT SPECIFIED DISPLACEMENT
C VBDY(I) ..... VALUES OF THE DISPLACEMENTS CORRESPONDING TO IBDY(I)
C .. ... ... .................. ...... ............... .... ..... ...... ..
C

IMPLICIT REAL*8(A-H.O-Z)
DIMENSION S(NRMAX.NCMAX).SL(NRMAX).IBDY(NBDY).VBDY(NBDY)

C
DO 300 NB-1.NBDY

IE-IBDY(NB)
SVAL-VBOY(NB)
IT-NHBW-1
I-IE-NHBW
00 100 II-I.IT

1-1+1
IF (I.GE.1) THEN

J-IE-I+I
SL(I)-SL(I)-S(I.J)*SVAL
S(I.J)-O.O

END IF
100 CONTINUE

S(IE.I)-I.O
SL(IE)-SVAL
I-IE
DO 200 II-2.NHBW

1-1+1
IF (I.LE.NEO) THEN

SL(I)-SL(1)-S(IE,II)*SVAL
S(IE.II)-O.O

END IF
200 CONTINUE
300 CONTINUE

RETURN
END

C

C
SUBROUTINE SOLVE(NRM.NCM,NEONS,NBW.BAND.RHS.IRES)

C
C . .. . . ... .. . ,. . . . ...... .. .. .. ......
C SOLVING A BANDED SYMMETRIC SYSTEM OF EQUATIONS
C IN RESOLVING. IRES .GT. 0. LHS ELIMINATION IS SKIPPED
C
C BAND(MN)... GLOBAL STIFFNESS MATRIX (IN BANDED FORM)
C IRES ........ IF IRES .GT. 0 THEN FORWARD ELIMINATION IS SKIPPED
C NBW ......... HALF-BAND WIDTH OF GLOBAL STIFFNESS MATRIX
C NCM ......... VALUE OF THE COLUMN-DIMENSION OF S
C NEONS ....... NUMBER OF EQUATIONS (TOTAL DEGREES OF FREEDOM)
C NRM ......... VALUE OF THE ROW-DIMENSION OF S
C RHS(M) ...... GLOBAL FORCE VECTOR
C SVAL ........ VALUE OF CURRENT SPECIFIED DISPLACEMENT
C VBDY(I) ..... VALUES OF THE DISPLACEMENTS CORRESPONDING TO IBDY(I)
C
C

IMPLICIT REAL*8(A-H.O-Z)
DIMENSION BAND(NRM.NCM).RHS(NRM)

C
MEONS-NEONS- 1
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C
C Forward Elimination
C

IF (IRES.EO.O) THEN
DO 500 NPIV-1.MEONS

NPIVOT-NPIV+1
LSTSUB-NP IV+NBW- 1
IF (LSTSUB.GT.NEONS) LSTSUB-NEONS
DO 400 NROW-NPIVOTLSTSUB

C
C Invert rows and columns for row factor

NCOL-NROW-NPIV+1
FACTOR-BAND(NPIVNCOL)/BAND(NPIV.1)
DO 200 NCOL-NROW.LSTSUB

ICOL-NCOL-NROW+1
JCOL-NCOL-NPIV+1
BAND(NR0W.ICOL)-BAND(NROW.ICOL)-FACTOR*BAND(NPIV.JCOL)

200 CONTINUE
RHS(NROW)-RHS(NROW) -FACTOR*RHS( NPIV)

400 CONTINUE
500 CONTINUE

END IF
C
C Skip forward elimination of matrix for IRES .GT. 0
C

IF (IRES.GT.0) THEN
90 DO 100 NPIV-1.NEONS

NP! VOT-NPI V+1
LSTSUB-NPI V+NBW- 1
IF( LSTSUB .GT.NEONS) LSTSUB-NEONS
DO 110 NROW-NPIVOT.LSTSUB

NCOL-NROW-NPIV+1
FACTOR-BAND(NPIV,NCOL)/BAND(NPIV.1)
RHSCNROW)-RHS(NROW) .FACTOR*RHS(NPIV)

110 CONTINUE
100 CONTINUE

END IF
C
C Back Substitution
C

DO 800 IJK-2.NEONS
NPIY-NEONS- IJK+2
RHS(NPIV)-RHS(NPIV)/BAND(NPIV.1)
LSTSUB-NPI V NBW+1
IF (LSTSUB.LT.1) LSTSUB-1
NP! VOT-NPIV-1
DO 700 JKI-LSTSUB.NPIVOT
NROW-NPI VOT-JKI+LSTSUB
NCOL-NPIV-NROW+1
FACTOR-BAND( NROW, NCOL)
RHS( NROW)-RHS(NROW) -FACTOR*RHS( NPIV)

700 CONTINUE
800 CONTINUE

RHS(1 )-RHS(1)/BAND(1 .1)
RETURN
END

C
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C
SUBROUTINE SHAPE(NPE.XI.ETA.ELXY.DET)

C
C . ... ... ... ...... ... ... ...... .... . ... .... ..... . .. ........ .
C THIS SUBROUTINE EVALUATES THE INTERPOLATION FUNCTIONS (SF(I)) AND
C ITS DERIVATIVES WITH RESPECT TO NATURAL COORDINATES (DSF(I.J)).
C AND THE DERIVATIVES OF SF(I) WITH RESPECT TO GLOBAL COORDINATES
C FOR 4, 8. AND 9-NODED RECTANGULAR ISOPARAMETIRC ELEMENTS
C
C DET ......... DETERMINATE OF JACOBIAN TRANSFORMATION MATRIX
C DSF(I.J) .... LOCAL DERIVATIVE OF SF(J) WITH RESPECT TO XI IF I-i
C AND WITH RESPECT TO ETA IF 1-2.
C ELXY(I.J)... ELEMENT NODE COORDINATES OF ELEMENT NODE I
C J-1 FOR X-COORD. J-2 FOR Y-COORD
C GDSF(I.J)...GLOBAL DERIVATIVE OF SF(J) WITH RESPECT TO X IF I-i
C AND WITH RESPECT TO Y IF 1-2.
C GJ(I.J) ..... JACOBIAN MATRIX
C GIINV(I.J)..INVERSE OF THE JACOBIAN MATRIX
C NP(I) ....... ARRAY OF ELEMENT NODES (USED FOR DEFINING SF AND DSF).
C NPE ......... NUMBER OF NODES PER ELEMENT (4. 8 OR 9)
C SF(I) ....... INTERPOLATION FUNCTION FOR NODE I OF THE ELEMENT
C XI.ETA ...... LOCAL COORDINATE VALUES OF GAUSS POINTS
C XNODE(I.J)..LOCAL COORDINATES OF NODE I OF THE ELEMENT
C J-1 FOR XI-COORD. J-2 FOR ETA-COORD
C ..... .. .. . ... ........ .... . ... .... .. . ...... . .. ... .

C
IMPLICIT REAL*8 (A-H.O-Z)
COMMON/SHP/SF(9).GDSF(2.9)
DIMENSION ELXY(9.2).XNODE(9.2).NP(9).DSF(2.9).GJ(2.2).GJINV(2.2)

C
C Local nodal point coordinates 'XNODE' and node numbers 'NP'
C

DATA XNODE/-I.ODO.2*1.ODO,-I.ODO.O.ODO.,.ODO.O.ODO,-I.ODO.O.ODO.
* 2*-1.ODO.2*1.ODO.-I.ODO.O.ODO.1.ODO.2*O.ODO/

DATA NP/I1.2.3.4.5.7.6.8.9/
C
C Multiplication function for real variables
C

FNC(AB)-A*B
C

IF (NPE-8) 60.10.80
C
C Ouadratic interpolation functions (for the EIGHT-NODE element)
C

10 DO 40 I-1.NPE
NI-NP(I)
XP-XNODE(NI.1)
YP-XNODE(NI.2)
XIO-I.O+XI*XP
ETAO-1.0+ETA*YP
XI1-I.O'XI*XI

ETAI-1.0-ETA*ETA
C

IF (I.GT.4) GOTO 20
SF(NI)-O.25*FNC(XIO.ETAO)*(XI*XP+ETA*YP-1.0)
DSF(1.NI)-O.25*FNC(ETAO,XP)*(2.0*XI*XP+ETA*YP)
DSF(2.NI)-O.25*FNC(XIO.YP)*(2.0*ETA*YP+XI*XP)



121
GOTO 40

C
20 IF (I.GT.6) GOTO 30

SF(Nl)-0.5*FNC(XIl .ETAO)
DSF(I.NI)--FNC(XI.ETAO)
DSF(2.NI )-O 5*FNC(YP.Xll)
GOTO 40

C
30 SF(NI)-O.S*FNC(ETA1.XI0)

DSF(1 .NI)-0.5*FNC(XP.ETAI)
DSF(2.NI)--FNC(ETA.XIO)

40 CONTINUE
GOTO 130

C
C Linear interpolation functions (for the FOUR-NODE element)
C

60 D0 70 I-1.NPE
XP-XNODE(I .1)
YP-XNODE( 1.2)
XI0-1.0+XI*XP
ETAO-1 .W+TA*YP
SF(I )-O.25*FNC(XIO.ETA0)
DSF(l .1)-O.25*FNC(XP.ETAO)
DSF(2. I )0.25*FNC(YP.XI0)

70 CONTINUE
GOTO 130

C
C Ouadratic interpolation functions (for the NINE-NODE element)
C

80 DO 120 I-1.NPE
NI-NP(I
XP-XNODE(NI .1)
YP-XNODE(NI .2)
XIO-1 O+XP*XP
ETAO-1 O+ETA*YP

ETA1-1 .0-ETA*ETA
XI2-XP*XI
ETA2-Y P*ETA
IF (I.GT.4) GOTO 90

SF(NI )-0.25*FNC(XI0.ETAO)*XI2*ETA2
DSF(1.NI)-0.25*XP*FNC(ETA2.ETAO)*(1.0+2.0*X12)
DSFC2,NI )-0.25*YP*FNC(XI2.XIO)*(1 .O.2.O*ETA2)
GOTO 120

90 IF (I.GT.6) GOTO 100
SF(NI )0...5*FNC(XI1 .ETAO)*ETA2
DSF(1 .NI)--XI*FNC(ETA2.ETAO)
DSF(2.NI )-0.5*FNC(XII.YP)*(1 .0+2.O*ETA2)
GOTO 120

100 IF (I.GT.8) GOTO 110
SF(NI )-05*FNC(ETA1 .XIO)*XI2
DSF(2.NI)--ETA*FNC(XI2.XIO)
DSF(I.NI)-0.5*FNC(ETA1 .XP)*(1.O+2.O*X12)
GOTO 120

110 SF(NI)-FNC(XI1.ETA1)
DSF(INI)--2.0*XI*ETAl
DSF(2,Nl)--2.0*ETA*XI1

120 CONTINUE
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C
C Transform derivatives from local (XI.ETA) to global (X.Y) derivatives
C

130 DO 140 1-1.2
DO 140 J-1,2

GJ(I .J)-O.O
00 140 K-1.NPE

GJ(I .J)-GJ(I .J)+DSF(I.K)*ELXY(K.J)
140 CONTINUE

DET-GJ(1.1)*GJ(2,2)-GJ(1.2)*GJ(2,1)
GJINV(1.1)-GJ(2.2)/DET
GJINV(2.2)-GJ(1.1)/DET
GJINV(1,2)--GJ(1.2)/DET
GJINV(2.1)--GJ(2.1)/DET
DO 150 1-1.2

DO 150 J-1,NPE
GDSF(I.J)-O.O
DO 150 K-1.2

GDSF(I.J)-GDSF(I,J)+GJINV(I.K)*DSF(K.J)
150 CONTINUE

C
RETURN
END

C

C
SUBROUTINE MESH(IEL.NX.NY.NPE.NNMNEM)

C

C THIS SUBROUTINE GENERATES ARRAY NOD(IJ) COORDINATES X(I).Y(I)
C AND MESH INFORMATION (NNM.NEMNPE) FOR RECTANGULAR DOMAINS. THE
C DOMAIN IS DIVIDED INTO LINEAR OR QUADRATIC QUADRILATERAL ELEMENTS
C (NX BY NY NONUNIFORM MESH IN GENERAL).
C
C DX(I).DY(I).DISTANCE BETWEEN NODES IN X.Y DIRECTIONS FOR MESH
C GENERATION
C IEL ........ ELEMENT TYPE (IEL-1: 4 NODES. IEL-2: 8 OR 9 NODES)
C NEM ........ TOTAL NUMBER OF ELEMENTS
C NNM ........ TOTAL NUMBER OF NODES
C NOD(I.J) ... CONNECTIVITY MATRIX
C NPE ........ NUMBER OF NODES PER ELEMENT
C NX,NY ...... NUMBER OF ELEMENTS ALONG XY-DIRECTIONS
C NXX.NYY .... NUMBER OF SUBDIVISIONS BETWEEN NODES IN X,Y-DIRECTIONS.
C NXXI.NYY1..NUMBER OF NODES ALONG X.Y-DIRECTIONS
C NYY ........ NUMBER OF DIVISIONS BETWEEN NODES IN V-DIRECTION
C X(1).Y(1)..COORDINATES OF THE ITH NODE
C ... . . .... . . ..... .,,,, ... . . . .
C

IMPLICIT REAL*8 (A-H.O-Z)
COMMON/MSH/NOD(200.9).X(225).Y(225),DX(15),DY(15)

C
C Mesh of Quadrilateral Elements with Four, Eight, or Nine nodes
C

100 NEXI-NX+I
NEY1-NY+1
NXX-IEL*NX
NYY-IEL*NY
NXXI-NXX+1
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NYY 1-NYY+1
N EN-N X*NY
NNN-NXXI*NYY1 -( IEL- 1)*NX*NY
KO-O
IF (NPE.EO.9) THEN
NNN-NXXI*NYY1
KO-1

END IF
C
C Generate element connectivity array 'NOD(I.J)' of first element
C

NOD(1,1)-1
NOO(1 .2)-lEL+l
NOD(1 ,3)-NXX1+( IEL-1 )*NEX1+IEL+I
IF (NPE.EO.9) NOD(i.3)-4*NX+5
NOD(1 .4)-NOD(1 .3)-IEL
IF (NPE.GT.4) THEN
NOD(1.5)-2
NOD(1 .6)-NXX1+(NPE-6)
NOD(1 .7)-NOD(1 .3)-i
NOD(l1.8)-NXX1+1
IF (NPE.EO.9) NOO(1.9)-NXX1+2

END IF
C
C For more than 1 element in the y-direction
C

200 IF (NY.GT.l) THEN
N-i
DO 220 N-2,NY

L-(N-i )*NX+i
DO 210 I-i.NPE

210 NOD(L.I)-NOD(M.I)+NXXI+(IEL-1)*NEXI+KO*NX
N-L

220 CONTINUE
END IF

C
C For more than I element in the x-direction
C

230 IF (NX.GT.i) THEN
DO 260 NI-2.NX

DO 240 I-1.NPE
KI-IEL
IF(I .EO.6.OR.I .EO.8)Ki-i+KO

240 NOD(NI .l)-NOD(NI-1.I)+Ki
N-NI
DO 260 NJ-2.NY

L-(NJ-1)*NX+NI
DO 250 J-i,NPE

250 NOD(LJ)-N0D(N.J)+NXX1+(IEL-1)*NEXI+KO*NX
N-L

260 CONTINUE
END IF

C
C Generate the nodal coorinates arrays 'X(I)' and 'Y(I)'
C

270 YC-O.O
C
C For 4 or 8-noded elements
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C

IF (NPE.EO.9) GOTO 310
DO 300 NI-I .NEY1

J-NI-I)kIEL+l
X (I -O .0
Y( I)-YC
DO 280 NJ-1.NXX

1-I+1
X(lI)-X(l-1 )+DX(NJ)
Y( I)-YC

280 CONTINUE
C
C For 8-noded elements
C

IF (NI .GT.NY.OR.IEL.EO.l) GOTO 300
J-J+1
YC-YC+DY(J-1)
1-I+1
X(I)-0.O
Y(I)-YC
DO 290 II-i .NX

K-2*1I.1
1-1+1
XCI )-X(1-1)+DX(K)+DX(K+1)
Y(I)-YC

290 CONTINUE
300 YC-YC+DY(J)

RETURN
C
C For 9-noded elements
C

310 DO 330 NI-I,NYY1

XC-O.O
DO 320 NJ-1.NXX1

1-1+1
X(I)-XC
Y1I)-YC
XC-XC+DX(NJ)

320 CONTINUE
YC-YC+DY(CNI)

330 CONTINUE
C

RETURN
END
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